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Abstract

I study the yield curve dynamics in a general equilibrium model with financial

intermediaries facing financing constraints. The economy features a positive real

term premium in equilibrium stemming from financing constraints that occasion-

ally bind. A flat yield curve reduces intermediaries’ incentives to engage in maturity

transformation and therefore is associated with lower levels of credit. I show that

this mechanism 1) is a plausible reason for why a flattening of the yield curve pre-

cedes recessions and 2) also rationalizes why the term structure of distributions of

future real outcomes are negatively skewed when financial conditions are tight.
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One of the main lessons of the large body of research on the nexus between financial

intermediation and the macroeconomy is that financial intermediaries face constraints

that distort the allocation of goods and capital—hence affecting agents’ marginal valua-

tions. In this paper, I argue that the yield curve contains information about such distor-

tions because long-term yields are, by definition, a forecast of the economy’s marginal

valuation (Alvarez and Jermann (2005)). In other words, intermediaries’ constraints are

a macro source of term premia which means long-term yields and intermediaries’ bal-

ance sheet dynamics are closely related.

For this, I study a canonical general equilibrium intermediary asset pricing model

to underscore the mechanism through which intermediaries’ constraints cause a pos-

itive term premium. I show that the connection between intermediaries’ constraints,

marginal valuations, and long-term yields help us in rationalizing the salient properties

of the U.S. real and nominal yield curves. In particular, the model features highly non-

linear real yields, with an average upward-sloping real and nominal yield curves and

highly volatile long-term yields, facts that have proven very difficult to match in repre-

sentative agent models (Duffee (2018)). These results are purely driven by the fact that

financial intermediaries face occasionally binding constraints. Indeed, if intermediaries

were always unconstrained, then the yield curve would be flat and constant.

The mechanism is grounded in two main elements: intermediaries operate with

leverage in equilibrium, and they face financing constraints. These two elements have

been extensively studied in the macro-finance literature, but in this paper I focus the

analysis on the yield curve.1 To obtain leverage in equilibrium, I follow Brunnermeier

and Sannikov (2014), among others, and I assume intermediaries are more efficient

1Recent literature, reviewed below, has departed from the representative agent analysis of the yield
curve but without stressing the role of financing constraints—a salient characteristic of intermediaries.
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in handling risky assets. That is, financial intermediaries issue short-term deposits to

savers to fund positions in long-term risky assets and take advantage of their relatively

better investment technology. However, intermediaries’ positions in long-term risky

assets can be constrained in certain states of the world due to agency problems, as

in Gertler and Kiyotaki (2015). As a consequence, when intermediaries hit their con-

straints, they are forced to sell risky assets to less efficient savers and, subsequently, ag-

gregate consumption and asset prices decline, the price of risk increases, and the wealth

of financial intermediaries deteriorates even further, which force intermediaries to real-

locate their portfolios, and so on. This well-known feedback mechanism has important

implications for the yield curve, as I detail next.

The presence of occasionally binding constraints implies the economy features a

bimodal distribution: It spends the vast majority of time in a “normal regime,” in which

constraints are slack, risk premia are low, the real interest rate is low, and volatility of

asset prices is moderate. When negative aggregate shocks occur, the economy can en-

ter in a “crisis regime” in which financing constraints are binding. Here, intermediaries

reallocate their portfolios and wealth is transferred to inefficient savers. Savers’ ineffi-

ciencies in handling risky assets causes deadweight losses and pushes the consumption

level persistently below the trend growth and, therefore, the real interest rate persis-

tently increases as agents perceive the “crisis regime” as transitory—the consumption

level will recover its trend in the future. But this occurs precisely when the price of risk

spikes, implying that real bond prices go down in states in which the marginal investor

values those resources the most—a “crisis regime.” Thus, real bonds carry an endoge-

nously time-varying term premium and the yield curve is upward sloping, on average,

due to the fact there is always a non-zero probability the economy can hit financing
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constraints.

I extend the analysis to study the nominal yield curve by introducing a simple mon-

etary policy rule that is subject to persistent monetary shocks. The monetary policy rule,

which takes the form of a Taylor rule, pins down an equilibrium inflation process that

depends on the state of the economy as well as on persistent monetary policy shocks.

The equilibrium nominal yield curve nominal is consistent with the empirical evidence

on nominal yields as long as the reaction function of the monetary policy rule with re-

spect to inflation is greater than one-by-one. As noted in Schneider (2022), if the model

can capture the main properties of the real yield curve, then the nominal yield curve

can be simply rationalized with an empirically plausible Taylor rule (i.e., a rule in which

the monetary authority adjusts the interest rate more than one-by-one with inflation).

I extend the analysis in Schneider (2022) to include persistent monetary policy shocks

and therefore have a flexible environment in which the nominal yield curve is driven by

both real and nominal shocks.

Besides accounting for the salient properties of the real and nominal yield curves

(positive average term premium and highly volatile long-term yields), I show that the

mechanism relating financial intermediary wealth and the yield curve rationalizes in-

teresting macroeconomic phenomena. The purpose of these exercises is to illustrate

that the mechanism in the model can rationalize evidence beyond the scope of the yield

curve, therefore providing external validation of the key economic forces in the model.

First, there is ample reduced-form evidence indicating that a flattening of the yield

curve—a smaller difference between long- and short-term rates—is associated with lower

future economic activity. I show that the model contains a positive relationship between

the slope of the yield curve and the quantity of credit intermediated in the economy. In
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the model, a flattening of the yield curve (caused by a reduction in the term premium

instead of the expected path of short-term interest rates) reduces the intermediaries’

incentives to engage in maturity transformation. I argue that this mechanism could be,

at least partially, a plausible reason for why a flattening of the yield curve precedes re-

cessions: A flattening of the yield curve is associated with lower credit growth—and,

potentially, lower economic activity.2

Second, recent literature has stressed the role of financial conditions in driving the

distribution of real variables in the near future (Adrian, Boyarchenko and Giannone

(2019); Giglio, Kelly and Pruitt (2016)). More precisely, when financial conditions de-

teriorate, the forecasted conditional distribution of GDP growth becomes more nega-

tively skewed. Moreover, this distribution changes with the forecast horizon; there is a

term structure of conditional distributions that changes over the forecast horizon. The

conditional distributions of real variables are intimately related with the yield curve,

because long-term yields are conditional expectations of future variables (a point es-

timate), while the forecasted distribution includes computing the entire distribution of

future realizations. To rationalize the evidence, I compute the term structure of the con-

ditional probability density function of consumption and intermediaries’ wealth across

the horizon. This is the model’s theoretical counterpart of the estimated conditional dis-

tributions in, for example, Adrian et al. (2019). I show the model captures the evidence

relatively well: conditional on a state in which intermediaries are constrained (tight fi-

nancial conditions), the term structure of conditional distributions of consumption ex-

hibit a negative skewness. When financial conditions are loose, the negative skewness

vanishes and the term structure of conditional distributions is roughly Gaussian.

2Minoiu, Schneider and Wei (2022) investigate in detail the connection between the term premium
and banks’ lending.
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Related literature. This paper relates to a strand of literature that has departed from

the representative agent analysis of the yield curve. In this line, part of the literature has

stressed the role of certain agents (arbitrageurs, intermediaries, etc.) in explaining the

yield curve dynamics, typically in a partial equilibrium setup (Vayanos and Vila (2021),

Greenwood and Vayanos (2014), Haddad and Sraer (2019)). Relative to this literature,

the contribution of this paper is to use a general equilibrium framework to study the

role of financing constraints in driving the yield curve dynamics.3

The general equilibrium framework I build on (He and Krishnamurthy (2013), Brun-

nermeier and Sannikov (2014), Gertler and Kiyotaki (2015), among many others) has

been extensively studied in the macro-finance literature to answer a variety of ques-

tions, particularly after the Great Recession. For example, Gertler and Karadi (2011)

study unconventional monetary policies; Van der Ghote (2021) studies the coordination

of conventional and macroprudential policies; Maggiori (2017) studies the risk sharing

dynamics between countries that differ in their degree of financial development; Bigio

and Schneider (2017) analyze the role of financing constraints and liquidity shocks in

driving the equity premium. Relative to this literature, the contribution of this paper is

to shift the focus away from equities (or “capital”) to the yield curve dynamics. In partic-

ular, I show that financing constraints play a crucial role in producing an endogenously

time-varying real term premium. Also, I show the connection between the yield curve

and financial intermediaries’ wealth is important for understanding why changes in the

yield curve are associated with recessions, and also to understand why tight financing

constraints imply a negatively skewed distribution of future economic outcomes.

3Other papers have studied the yield curve in a general equilibrium setup with heterogeneous agents
(e.g., Wang (1996), Schneider (2022), Ehling, Gallmeyer, Heyerdahl-Larsen and Illeditsch (2018), among
others) but without financing constraints.
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1 Model

I propose a general equilibrium model with a financial intermediary sector along the

lines of Brunnermeier and Sannikov (2014), He and Krishnamurthy (2013), and Gertler

and Kiyotaki (2015) and focus on the pricing implications for the yield curve. I first

solve for the real equilibrium and derive the real yield curve. I next extend the analysis

to include a monetary policy rule and derive the nominal yield curve.

Time is continuous and denoted by t > 0. Aggregate output, denoted by Yt, follows

dYt

Yt
= µdt + σdWt,

where parameters µ > 0, σ > 0 are constants and Wt is a standard Brownian motion in

a complete probability space (Ω, F, P) .

The economy is populated by a continuum of savers (denoted by s) and a contin-

uum of financiers (denoted by f ). Financiers are in charge of managing financial firms,

which are owned by savers, while the savers maximize their discounted utility from con-

sumption. Both f and s are allowed to trade risky assets, but a key difference between f

and s is that the former have a comparative advantage in operating risky assets over the

latter—which implies f and s engage in borrowing and lending in equilibrium.4

Agents can trade two classes of assets—namely, long-term risky assets and short-

term risk-free deposits. The long-term asset is in exogenous fixed supply and I denote

its ex-dividend price by qt. This asset pays a dividend Yt per unit of time if held by f ,

but ωYt, ω < 1, if held by s. That is, it is more costly for savers than financiers to oper-

4Although my assumption about f and s having different expertise in handling the risky assets dif-
fers from He and Krishnamurthy (2013)—who assume segmented markets and that only “specialists”
can trade risky assets—the asset pricing implications of both assumptions are similar (see Brunnermeier,
Eisenbach and Sannikov (2013)).
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ate this risky asset.5 The purpose of this assumption is to obtain endogenous leverage

in equilibrium, in the same way as in Brunnermeier and Sannikov (2014): Financiers

have an advantage in handling risky assets and therefore will borrow from savers to take

leveraged positions in risky capital. A direct consequence of assuming ω < 1 is that

when financiers’ wealth is impaired and savers are handling risky assets, the aggregate

dividend (and, in equilibrium, consumption) will decline.

The total return of investing in the long-term asset consists of the dividend yield

plus the capital gains. For financiers, this is

dR f ,t =
Yt

qt
dt +

dqt

qt
,

while for savers the total return is

dRs,t =
ωYt

qt
dt +

dqt

qt
, ω < 1.

Second, the short-term deposit account is in zero net supply, and it yields a risk-

free interest rate, denoted by rt. For simplicity, I solve the model with the generic long-

term asset qt and the short-term deposit account. I introduce zero-coupon bonds of all

maturities that are also in zero net supply below. That is, zero-coupons are redundant

in the construction of the equilibrium, but they are useful to characterize the economy’s

equilibrium yield curve.

Savers consume and save. They have recursive preferences as in Duffie and Epstein

5This assumption about ω is equivalent to assume that savers have to pay a cost to operate risky assets
(Gertler and Kiyotaki (2015))
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(1992b) and their utility function is given by

Ut = Et

[∫ ∞

t
f (cu, Uu)du

]
,

where

f (c, U) =
ρ

1− 1
ψ

 c1−1/ψ

[(1− γ)U]

(
γ− 1

ψ

)
/(1−γ)

− (1− γ)U

 . (1)

In (1), c is the savers’ consumption, ρ is the time preference, ψ is the elasticity of in-

tertemporal substitution (EIS), and γ is the risk aversion.

The savers’ problem consists of choosing how much to consume and save in or-

der to maximize their expected discounted utility. They can allocate their portfolios

between risk-free deposits issued by financiers and can also hold risky assets. Their op-

timization problem can be written as

max
{ct,θs,t}

Ut,

subject to

dns,t = [ns,trt − ct + qtθs,t (Et [dRs,t]− rt) + Tt]dt + qtθs,tσq,tdWt, (2)

ns,t ≥ 0,

where ns,t is the savers’ net worth, θs,t is the holding of the risky asset, and Tt the net

transfers received from financiers’ profits. Transfers are locally riskless because below I

assume the dividend policy implemented by financiers is so.

Financiers are in charge of managing a financial intermediary firm. They operate
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this firm by issuing deposits to savers as well as using their own wealth, n f ,t, but they

face financing constraints (described below). Their objective is to manage the financial

intermediaries’ portfolio and do not consume.6 Instead, they paid dividends to savers.

To avoid financiers growing out of their constraints, I follow Gertler and Kiyotaki (2015)

and I assume a simple dividend policy in which dividends follow an exogenous Poisson

process with intensity λ.7 After paying dividends, financiers receive a fraction x of the

economy’s total wealth to re-start the financial firm. Financiers’ problem is to maximize

the value of the firm (i.e., the expected discounted value of firms’ dividends)—that is,

Vf ,t = max
θ f ,t

Et

[∫ ∞

t

mu

mt
λe−λ(u−t)n f ,udu

]
, (3)

subject to

dn f ,t =
[
rtn f ,t + qtθ f ,t

(
Et
[
dR f ,t

]
− rt

)]
dt + θ f ,tqtσq,tdWt, (4)

Vf ,t ≥ κθ f ,tqt, (5)

n f ,t ≥ 0,

where mt is savers’ marginal utility, defined below, and θ f ,t is financiers’ holdings of the

risky asset. Financiers face a financing constraint, (5), that can be motivated with a

standard agency problem. Specifically, I follow Gertler and Kiyotaki (2015) and assume

the value of the financial intermediary firm has to be greater than a fraction of the assets

6The assumption that financiers do not consume is different than in Brunnermeier and Sannikov
(2014). Assuming there is perfect consumption insurance between the savers and the financers simpli-
fies the solution of the model and the analysis of the yield curve, because savers are in charge of pricing
consumption across time.

7Recall that financiers have a technological advantage over savers, a force that pushes financiers to
grow out of financing constraints.
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the firm holds. This constraint operates as an endogenous leverage constraint.

I next define a competitive equilibrium.

Definition 1 (Competitive equilibrium) A competitive equilibrium is a set of aggregate

stochastic processes: prices qt, rt, policy functions for savers (θs,t, ct) , policy functions for

financiers’ θ f ,t, the value of the financiers’ firm Vf ,t, and the utility of savers Ut, such that

1. Given prices, (θs,t, ct) solves savers’ problem

2. Given prices,
(
θ f ,t, Vf ,t

)
solves financiers’ problem

3. Markets clear (long-term asset, consumption good, and short-term debt)

θs,t + θ f ,t = 1,

ct = ωθs,tYt + θ f ,tYt,

n f ,t + ns,t = qt,

where the last equation (market clearing for short-term debt) is redundant due to Walras’

Law, but is useful to explicitly show that wealth holdings add up to total wealth qt.

The market clearing condition for the goods market, which shows that consump-

tion must be equal to the aggregate dividends, is crucial for understanding the results.

When savers hold risky assets, θs,t > 0, the aggregate consumption falls because there

are deadweight losses associated with savers handling risky assets. One interpretation

of the assumption about ω is that financiers lend resources to firms that are more pro-

ductive than savers when producing consumption goods, as in Brunnermeier and San-

nikov (2014). An alternative interpretation is that savers need to pay a cost when holding
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risky assets, which captures savers’ lack of expertise relative to financiers in screening

and monitoring investment projects, as in Gertler and Kiyotaki (2015). I provide further

discussion in the appendix about the quantitative implications of ω < 1 for consump-

tion and the price of risky capital, and I contrast those implications with the evidence.

Before turning to the solution of the model, it is useful to characterize agents’ opti-

mization problems with their first order conditions. For savers,

rt = −Et

[
dmt

mt

]
,

and

Et [dRs,t]− rtdt ≤ −Et

[
dmt

mt
dRs,t

]
,

with equality if households are holding long-term assets (i.e., θs,t > 0). The savers’

stochastic discount factor, as noted in Duffie and Epstein (1992b), is given by

dmt

mt
=

d fc,t

fc,t
+ fU,tdt,

where fc and fU are the partial derivative of the aggregator (1) with respect to c and U,

respectively.

The optimality conditions for financiers require a few more steps. First, notice be-

cause financiers’ objective function and constraints are linear in wealth, the value func-

tion can be written as

Vf ,t = φtn f ,t, (6)

where φt ≥ 1 can be interpreted as financiers’ marginal value of wealth (as well as a
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“Tobin’s q”).8 Notice that φt is an endogenous Itô process whose drift µφ,t and diffusion

σφ,t are solved in equilibrium. Then the financing constraint can be written as

φtn f ,t ≥ κθ f ,tqt,

φt ≥ κ
θ f ,tqt

n f ,t
≡ κα f ,t,

where α f ,t is the endogenous financiers’ portfolio share in the risky asset. The financiers’

problem can be written as

0 = max
θ f ,t

λ
(
n f ,t −Vf ,t

)
mtdt + Et

[
d
(
mtVf ,t

)]
+ χt

(
Vf ,t − κθ f ,tqt

)
dt, (7)

where χt is the Lagrange multiplier associated with the financing constraint. Using (6)

and (7), the first order conditions for financiers can be written as

Et
[
dR f ,t

]
− rtdt ≥ −Et

[(
dmt

mt
+

dφt

φt

)
dR f ,t

]
,

with equality if χt = 0. Put differently, financiers are the marginal investors in long-term

risky assets if their constraints are not binding. If financing constraints are binding, then

their holdings in risky assets are pinned down by such constraints (i.e., φt = κα f ,t), and

savers are the marginal investors in risky assets.

Real Yield Curve. I next characterize the yield curve in the economy, which consists

of the endogenous price vector for real bonds denoted by
{

P(τ)
t

}
τ≥0

, where τ repre-

sents the time to maturity of the bond. Yields can then be obtained simply as y(τ)t =

− log P(τ)
t /τ. I assume that the saver is the marginal investor in long-term zero-coupon

8See Gertler and Kiyotaki (2015).
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real bonds. Intuitively, the saver is the marginal investor in the risk-free deposit, which

is the relative price of a unit of consumption in the present versus the next instant.

Hence, it is natural to assume the saver is also the marginal agent when pricing long-

term bonds, which are the relative price of a unit of consumption in the present versus

the near future. In addition, assuming the saver is the marginal investor for long-term

bonds is consistent with the evidence documented in Haddad and Muir (2021), who

show that Treasury bonds are one of the least intermediated asset class—suggesting fi-

nanciers’ are not marginal agents in such a market. The real bond price with time to

maturity τ is given by

P(τ)
t = P (x, τ) = Et

[∫ t+τ

t

mu

mt
du
]

,

which can be written as

Et

[
dP(τ)

t

P(τ)
t

]
− rtdt = −covt

(
dmt

mt
,

dP(τ)
t

P(τ)
t

)
.

I next extend the analysis to study the nominal yield curve.

Nominal yield curve. To compute nominal bond prices, I need to introduce money in

the analysis. For this, I follow an extensive literature in term structure analysis in endow-

ment economies and assume money is simply a unit of account (i.e., the consumption

good is quoted in terms of money) that does not affect the real allocation (see Cox, In-

gersoll and Ross (1985b), among others). More precisely, I assume that the inflation rate

is pinned down endogenously by a monetary authority that follows and interest rate

rule subject to monetary policy shocks. In short, the setup I propose is akin to a two-

equation New Keynesian model, because I assume there is no Phillips curve.9 For this, I

9See Gaĺı (2015), chapter 2.
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first define the nominal stochastic discount factor as

m$
t =

mt

pt
, (8)

where pt is the price level (i.e., the price of one unit of consumption good in terms of

money). I assume the price level fluctuates smoothly (i.e., is not affected by Brownian

shocks),10

dpt

pt
= πtdt,

so that πt is the inflation rate. I assume the price level dynamics are pinned down by

a central bank following a Taylor Rule. That is, the central bank sets a nominal interest

rate iCB
t as

iCB
t = δ0 + δπ(πt − π) + st, (9)

where st is a persistent random variable capturing monetary policy surprises, δπ is the

so-called Taylor loading on inflation, and π is an inflation target (which can be absorbed

by the constant δ0). The monetary policy surprises follow

dst = −λsstdt + σsdWs,t,

where Ws,t are monetary policy shocks uncorrelated with the endowment shock. Then,

in equilibrium, the iCB
t must be equal to the nominal interest rate priced by savers

iCB
t dt = −Et

[
dm$

t

m$
t

]
. (10)

10Implicitly, the assumption is that the monetary authority has the tools to pin down a smooth price
level; see Di Tella and Kurlat (2021).
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Using Itôs Lemma on (8) and replacing in (10), I obtain an endogenous inflation process

πt =
rt − st − δ0

δπ − 1
.

Then, the price of a nominal bond with time to maturity τ is

P$,(τ)
t = P$ (x, s, τ) = Et

[∫ t+τ

t

m$
u

m$
t

du

]
,

2 Model Solution

I use the homogeneity property of objective functions and constraints to solve the equi-

librium in a recursive fashion, using a single endogenous state variable,

xt =
n f ,t

qt
∈ [0, 1] . (11)

The endogenous state variable xt follows an Itô process with drift µx,t and diffusion σx,t,

that I define in proposition 2 below. The solution of the model consists of solving the

endogenous variables in a Markov equilibrium in xt. For this, I characterize the equi-

librium using the optimality conditions for savers and financiers as well as the market

clearing condition. The proposition below shows the system of ordinary differential

equations (ODEs) that solves for financiers’ marginal value, φ (xt), the price-dividend

ratio p (xt) = qt/Yt, the savers’ value function U(x, c), and the real and nominal bond

prices.
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Proposition 2 The Markov equilibrium is characterized by the following system of ODEs.

In the unconstrained region (i.e., when x > x∗ where x∗ is such that ∀, φ(x)
κ > α (x)),

0 =
1

p (x)
+ µp (x) + µ + σp (x) σ− r (x) +

(
σφ (x)− γσc (x) +

(
1
ψ
− γ

)
σξ (x)

) (
σp (x) + σ

)
0 =

λ (1− φ (x))
φ (x)

+ µφ (x)−
(

γσc (x) +
(

1
ψ
− γ

)
σξ (x)

)
σφ (x)

0 =
ρ

1− 1
ψ

{
ξ (x)

1
ψ−1 − 1

}
+ µ− 1

2
σ2 + µξ (x)− γ

2
σξ (x)2 + (1− γ) σξ (x) σ

In the constrained region (i.e., when x ≤ x∗ where x∗ is such that ∀, φ(x)
κ > α (x) x ≤ x∗),

0 =
ω

p (x)
+ µp (x) + µ + σp (x) σ− r (x) +

((
1
ψ
− γ

)
σξ (x)− γσc (x)

) (
σp (x) + σ

)
,

0 =
λ (1− φ (x))

φ (x)
+

φ (x)
κ

(
(1−ω)

p (x)
+ σφ (x)

(
σp (x) + σ

))
+ µφ (x)−

(
γσc (x) +

(
1
ψ
− γ

)
σξ (x)

)
σφ (x) ,

0 =
ρ

1− 1
ψ

{
ξ (x)

1
ψ−1 − 1

}
+ µc (x)− 1

2
σc (x)2 + µξ (x)− γ

2
σξ (x)2 + (1− γ) σξσc (x) .

The real interest rate, rt = r(xt), is rt = −Et

[
dm
m

]
, where mt = exp

(∫ t
0 fUdu

)
fc, real

bonds are P (x, τ) = Et

[∫ τ
t

mu
mt

du
]

, and nominal bonds are P$ (x, τ) = Et

[∫ τ
t

m$
u

m$
t

du
]

,

solving

0 = −Pτ (x, τ)

P (x, τ)
+ µP (x, τ) +

1
2

σP (x, τ)2 − r (x)−
(

γσc (x) +
(

1
ψ
− γ

)
σξ (x)

)
σP (x, τ) ,

0 = −P$
τ (x, s, τ)

P$ (x, s, τ)
+ µ$

P (x, s, τ) +
1
2

σ$
P (x, s, τ)2 − i (x, s)−

(
γσc (x) +

(
1
ψ
− γ

)
σξ (x)

)
σP$ (x, s, τ) ,

with P (x, 0) = 1 ∀x and P$ (x, s, 0) = 1, ∀ (x, s). The terms µp (x), µφ (x), µξ (x), µc (x),

µP (x, τ), µ$
P (x, s, τ) and σp (x), σφ (x), σξ (x), σc (x), σP (x, τ), σP$ (x, s, τ) are partial

derivatives obtained applying Itô’s lemma in their corresponding functions.

Proof. See appendix.
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3 Results

Calibration. I calibrate the model at an annual frequency and solve it using global solu-

tion technique based on projection methods. I provide a detailed description of the so-

lution method in the appendix. Table 1 shows the three groups of parameters—namely,

Preferences and Endowment, Financiers, and Nominal rate. First, for Preferences and

Endowment, as I highlight below, the risk aversion (γ) and the EIS (1/ψ) play a critical

role in pinning down the dynamics of the real interest rate and the yield curve. This is

because γ and ψ control the relative strength of the precautionary savings (i.e., changes

in the interest rate followed by changes in volatility of consumption) and intertemporal

smoothing (i.e., the changes in the interest rate caused by changes in expected change

of consumption) forces. In the baseline calibration, I set γ=5 and ψ = 1/5, which means

the savers have CRRA preferences. I later relax this assumption and solve the model with

alternative preference parametrization and explain why the EIS play a critical role in the

results. For the endowment, I set σ=0.036, a number that is in line with the volatility of

productivity in the US and close to the value used in He and Krishnamurthy (2019).11

Lastly, I set µ=0.007 to match the average level of the real rate.

Second, for financiers’ technology and constraint, I calibrate κ=0.4 to target an aver-

age leverage of 3 (He and Krishnamurthy (2019)). I set λ=0.08, which gives an expected

payout rate of the intermediary as in Gertler and Kiyotaki (2015), and I set x = 0.2 to sta-

bilize the wealth of intermediaries below 0.5. Lastly, ω is a crucial assumption, and I set

ω=0.85. From a quantitative point of view, ω=0.85 imply that the price-dividend ratio

and consumption can drop, at most, 50% and 15%, respectively (this would be the case

11Previous papers have used a wide range of values for σ. For example, He and Krishnamurthy (2013),
in a similar setup, use σ=0.09; Brunnermeier and Sannikov (2014), also in a similar setup but with endoge-
nous production, use σ=0.1.
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when intermediaries have no wealth and savers hold the entire wealth in the economy).

Importantly, in equilibrium, households will almost surely never hold the entire wealth

in the economy (i.e., the probability of x reaching zero is almost surely zero). Indeed,

only in very rare occasions the price-dividend ratio and consumption will drop more

than 25% and 7%, respectively, in a given year.12

Finally, for the monetary policy rule, I set δπ = 1.5, which is a commonly used

parametrization since Taylor (1993) and broadly consistent with the evidence. I cali-

brate the monetary policy shock to match the persistence and volatility of the surprises

documented in Gertler and Karadi (2015).

Solution and Mechanism. Figure 1 shows the solution of the key endogenous variables.

All figures display the endogenous variables in the Markov equilibrium (i.e., endoge-

nous variables as a function of the state variable x). The red dashed line in all panels

represents the point at which the financing constraint binds.

The invariant distribution, displayed in the lower-left panel of Figure 1, shows the

economy has two modes. It spends the majority of the time in a normal regime where

constraints are slack (i.e., to the right of the red dashed line), and some time in a crisis

regime, where constraints are binding. Normal times are characterized by low volatil-

ity, low rates, and moderate leverage. As is common in these types of models, leverage

is counter-cyclical: The lower the intermediaries’ wealth (i.e., lower x), the higher the

leverage.

If the economy is in the normal regime and a sufficiently negative aggregate shock

occurs, financial intermediaries reallocate their portfolios, the price of risky assets de-

12I discuss further details about ω in the appendix and show that the equilibrium-implied losses in
consumption and asset prices are broadly in line with the empirical evidence documented in Muir (2017)
and Greenwood, Hanson, Shleifer and Sørensen (2022).
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clines, and the price of risk increases. Financing constraints may bind (depending on

the magnitude of the shock) and trigger the well-known financial accelerator mech-

anism studied in previous literature (e.g., Bernanke, Gertler and Gilchrist (1999)), in

which lower valuations deteriorate intermediaries’ wealth even further.

A central element in the yield curve dynamics is the behavior of the short-term in-

terest rate, r, shown in the upper-left panel. Notice that when the economy enters a

crisis regime, the price of risk spikes and the real interest rate increases. This is because

wealth is transferred to savers, who are inefficient in handling risky assets, which means

the level of aggregate dividends (and consumption) declines. Because the inefficiencies

caused by the misallocation of risky assets are temporary, savers expect the consump-

tion level to increase in the future, which causes an increase the real interest rate. Put

differently, the dynamics for the consumption level are similar to a random-walk with

drift, where deviations from the trend are persistent. When consumption is below the

trend, it is expected to mean-revert in the future. In the model, the trend is endoge-

nously driven by financial intermediaries’ wealth dynamics.

The Real Yield Curve. Intuitively, investors require a premium to hold an asset whose

value persistently declines in states in which the price of risk is high. This is precisely

what drives the real term premium in the economy: real bond prices decline (i.e., real

rate persistently increases) in states in which the price of risk is high. Figure 2 shows the

average yield curve in the economy. Simply put, in the stochastic steady state—where

expected short rates are constant—long-term yields are driven by the term premium,

causing the yield curve to be upward sloping on average. The left panel of Figure 2 il-

lustrates the dynamics of yields at different horizons across the state space. The mech-

anism through which financial intermediaries reduce their positions in risky assets by
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selling those to less efficient savers is more pronounced in short-maturity rates—long-

term yields are less sensitive to the misallocation of wealth in the economy. Put differ-

ently, current fluctuations in financiers’ wealth have a lower incidence in driving longer-

maturity bonds, a feature that can be appreciated in the left panel of Figure 2. The panel

shows the yield of bonds at 1-, 10-, and 30-year maturities and also displays the yield of

a very long-term bond. As the horizon of the bond increases, the yields become less sen-

sitive to current financial conditions: xt has a smaller impact on yields’ dynamics. This

result, driven by the persistence and stationarity of x, shows that even very long-term

rates can display substantial volatility.

The upper panel of figure 3 shows the real yield curve for different levels of x. The

circles in the figure represent the average real yields.13 The yield curve is flat when x

is high mainly because term premiums and real rates are low. When x is high, inter-

mediaries are relatively well capitalized and financing constraints are slack. When x is

low, however, the economy is in crisis times, constraints are binding, and real yields are

high. In this state, the short-term rate is expected to mean revert, and this force pushes

down long-term rates (even though term premia is high, the expectations of the short-

rate dominate). Thus, the gray line shows a downward-sloping yield curve. Finally, the

lower panel of 3 shows the standard deviations of yields across maturity. As can be seen,

the model can capture well the first and second moments of the real yield curve.

The Nominal Yield Curve. Figure 4 shows the nominal yield curve in the baseline cali-

bration. The top panel displays the nominal yield curve when x is at its mean value and

shows the yield curve at different values for the other state variable, the monetary pol-

icy shock st. In equilibrium, a low st translates into a higher inflation, which ultimately

13I use data for TIPS in the period 2002:Q1 to 2018:Q4 and Chernov and Mueller (2012) for 1971:Q3 to
2001:Q4. I explain in the appendix all the details about the data used in the paper.

21



causes higher nominal interest rates. This can be seen in the equilibrium nominal short

rate, which is the result of plugging the endogenous inflation process (1) into the Taylor

rule (9)

it = δ̃0 +

(
δπ

δπ − 1

)
rt +

(
δπ

1− δπ

)
st, (12)

where δ̃0 is an adjusted constant similar to δ0. Then, as long as δπ > 1 (which is the em-

pirically and theoretically relevant case), a higher (lower) st will, in equilibrium, cause

lower (higher) nominal rates because of the endogenous response in inflation. The

lower panel of Figure 4 shows the nominal yield curve for different values of x, holding

st at its unconditional mean. As noted in Schneider (2022), δπ > 1 produces a nominal

term premium that is larger than the real term premium. Hence, the model can capture

the evidence that the slope of the nominal yield curve is, on average, approximately

twice as big as the slope of the real yield curve. Intuitively, this is because, in order

to pin down inflation, the monetary authority must adjust the nominal interest rate to

changes in the state of the economy in a relatively stronger fashion than the adjustment

of the real rate.

Time-varying Term Premium and Bond Return Predictability. A central property of

the model is that expected excess returns on bonds are time-varying. As a consequence,

long-term yields fluctuate not only because of changes in the expected path of short-

term rates, but also due to changes in term premium. In other words, the so-called

expectations hypothesis is rejected in the model, a feature that is consistent with a large

body of evidence.14

The upper-left panel in Figure (5) shows the dynamics of the term premium in the

model, for different maturities, across the state space. The average term premium is

14Duffee (2013) provides a summary.

22



positive and increasing across maturities, as shown by the upper-right panel of Figure

(5). Intuitively, bonds of longer maturity contain more interest rate risk than bonds of

short maturity, and, as a consequence, carry a larger premium. Notice that the term

premium spikes when the constraints bind, as the price of risk increases and real bond

prices decline, in a similar dynamic to the one explained in the mechanism in the pre-

vious subsection.

Because the term premium fluctuates over time, a natural question to ask is whether

information in the yield curve at time t helps in predicting future fluctuations in time

term premia. In particular, the seminal work of Fama and Bliss (1987) shows that the

forward-spot spread predicts future excess returns on bonds, which is one of the salient

properties of the empirical evidence about the yield curve. I next study the extent to

which the predictability of bond returns is captured by the model. For this, I conduct a

predictability analysis following Fama and Bliss (1987). I run, using simulated data from

the model, the following regressions

rx(τ)t+1 = α(τ) + β(τ)
(

f (τ)t − y(1)t

)
+ εt+1 (13)

where rx(τ)t+1 = p(τ)t+1− p(τ)t − y(1)t , with p(τ)t = log P(τ)
t , are the excess returns of a τ−maturity

bond; f (τ)t is the one year forward between maturity n and n− 1; and y(1)t is the one-year

rate.

As noted in Fama and Bliss (1987), a positive β(τ) indicates that term premium fluc-

tuates through time and that a higher forward-spot spread predicts higher expected ex-

cess returns on bonds. Figure (5) shows the results for the β(τ) in the model, for ma-

turities between 2 and 5 years (as in Fama and Bliss (1987)). As shown, model-implied

coefficients are positive across all maturities, which implies the forward-spot spread in
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the model contains information about future bond excess returns, consistent with the

evidence reported in Fama and Bliss (1987).

A complementary way to illustrate the predictability results in the model is to nu-

merically compute the elements in regression (13) and study how they change across

the state space. For this, I study how expected excess return—the conditional expec-

tations of the regression (13)—and the forward-spot spread f (n)t − y(1)t —the right-hand

side of the regression (13)—change across the state space.

The lower-right panel of Figure (5) shows the expected excess returns for a 5-year

bond as well as the 5-year forward-spot spread across the state space. Consistent with

the estimates of equation (13) shown in the lower-left panel of Figure (5), as well as the

results in Fama and Bliss (1987), the model implies a positive co-movement between

the expected excess returns and the forward-spot spread. In other words, movements in

long-term one-year forwards (relative to the one spot one year rate) is primarily driven

by the spike in term premium.

The Role of Risk Aversion and the EIS. The risk aversion and EIS parameters play a

crucial role in characterizing how the real interest rate fluctuates across the state space.

Figure 6 shows the slope of the real yield curve (left panel) and the real interest rate (right

panel) for three different calibrations: the baseline calibration (γ = 5 and ψ = 1/5); a

calibration with a higher EIS but the same risk aversion than the baseline (γ = 5 and

ψ = 1/3); and a calibration with a higher EIS and lower risk aversion than the baseline

(γ = 3 and ψ = 1/3). The purpose of these three calibrations is to disentangle the role

of the EIS and the risk aversion in driving yields’ dynamics.

The baseline calibration is shown in blue in both panels, and it’s useful to use it

as a reference to compare against the alternative calibrations. The red bar on the left
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panel and the red-dashed line on the right panel show the slope of the real yield curve

and the real interest rate, respectively, for a calibration with higher EIS but the same

risk aversion as the baseline (γ = 5 and ψ = 1/3). As can be seen, increasing the EIS

—while holding the risk aversion constant—reduces the term spread to approximately

one-third of the term spread obtained in the baseline calibration. The reduction in the

term spread is because a higher EIS increases the relative importance of the precau-

tionary savings channel over the intertermporal smoothing channel: When the con-

straint binds and the volatility of consumption increases, the real interest rate declines,

as shown in the right panel. The decline in the real interest rate implies that real bond

prices increase in bad times, hence pushing down the real term premium. As the wealth

of intermediaries decline further, the pricing impact of intermediaries decline so that

volatility decreases. Then, the intertemporal smoothing channel dominates again, and

the real rate increases as the consumption declines further with lower x.

The gray bar on the left panel and gray dotted line on the right panel shows the term

spread and real rate in the case of lower risk aversion and higher EIS than the base-

line calibration. The results are similar to the case in which only the EIS is higher than

the baseline. The real interest rate declines somewhat when the financing constraint

binds, which indicates that the precautionary savings is stronger than the intertempo-

ral smoothing force but less so than in the case with (γ = 5, ψ = 1/3). Importantly,

notice that the case with (γ = 3, ψ = 1/3) implies similar term spread than the case

with the (γ = 5, ψ = 1/3). This indicates that the vast majority of the decline in the term

spread from the baseline calibration to the CRRA case with lower risk aversion of γ = 3

can be attributed to the EIS rather than the risk aversion coefficient.

Credit Cycle and the Yield Curve. A relatively well-known empirical regularity is that
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the slope of the yield curve is associated with changes in future economic growth. One

possible explanation for the connection between the slope of the yield curve and future

GDP growth is that the slope of the yield curve captures investors’ expectations about

the future path of the short-term interest rate. Hence, a reduction in the slope of the

yield curve could be attributed to investors expecting lower rates down the road as the

recession unfolds. Under this explanation, the slope of the yield curve and GDP growth

are linked through investors’ expectations about the path of the short-term interest rate.

An alternative explanation, not mutually exclusive with the previous one, could be

that the slope of the yield curve changes due to the term premium instead of the ex-

pected path of future rates. The model presented in Section 2 offers a plausible ex-

planation for why changes in the slope (driven by changes in the term premium) may

ultimately affect GDP, because it links yields with the amount of intermediated credit by

financiers. Although the model does not include an explicit production sector, a basic

extension can be added to link credit and production.15 Hence, through the lens of the

model’s mechanism, a plausible explanation for how the yield curve may cause changes

in GDP growth is that the yield curve affects the supply of credit. In other words, a lower

term spread, driven by changes in the term premium instead of the expected path of

short rates, reduces financiers’ incentives to engage in maturity transformation, hence

lowering the aggregate amount of credit in the economy.

Figure 7 shows the model’s prediction for the relationship between credit and the

slope of the yield curve. The positive correlation between the slope and credit indicates

that states in which the term spread is large correspond to expansions in credit. An

intuitive explanation for the positive correlation between the slope of the yield curve

15Many papers have studied the connection between aggregate credit and the business cycle. See
Bernanke and Gertler (1989), among others.
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and aggregate credit is that a larger term spread makes it more profitable to engage in

maturity transformation and therefore financiers expand credit. However, by definition,

the slope of the yield curve fluctuates due to both changes in the expected path of the

short rate as well as changes in the term premium. Only the latter, changes in the term

premium, affects intermediaries’ willingness to engage in maturity transformation. I

next show that the positive correlation between aggregate credit and the slope of the

yield curve in the model is driven by changes in the term premium instead of changes

in the expected path of short rates.

The yellow dashed line in figure 7 shows the slope of the yield curve assuming the

local expectation hypothesis (LEH) is valid.16 The LEH consists essentially in computing

the yield curve as if the term premium was zero and constant. The yield curve under

LEH is computed as

ye,(τ)
t = −1

τ
log Et

[
exp

(
−
∫ t+τ

t
rudu

)]
, (14)

where ye,(τ)
t is the average expected yield between t and t + τ. Then, the slope under the

LEH is just the spread across the yields computed in 14. Notice that the slope of the yield

curve under LEH is slightly negative and declines as the level of rates increases, and it

is therefore almost uncorrelated with changes in aggregate credit.17 As a consequence,

the dynamics of term premia is the main reason for why the slope of the yield curve

co-moves positively with the aggregate amount of credit.

To test the positive relationship between the slope of the yield curve and credit, I

16Cox, Ingersoll and Ross (1981) prove that the LEH is the version of the expectation hypothesis that is
consistent with a continuous-time, rational expectations equilibrium.

17The slope under LEH is slightly negative due to the presence of a Jensen’s inequality term. See Piazzesi
(2010), Section 2, for a detailed treatment.
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run the following regression:18

∆creditt = α + β∆slopet−1 + γ′κt−1 + εt. (15)

In 15, ∆creditt is the log-difference of real total loans to non-financial private sector be-

tween t and t − 1 , ∆slopet−1 is the difference between long and short interest rates in

t − 1, and κt−1 are controls.19 The source of the data is Jordà, Schularick and Taylor

(2016), and I run the regressions in two subsamples, the full sample (1870-2016) and the

postwar sample (1946-2016).

Table 2 shows the results.20 The slope of the yield curve is associated with the evo-

lution of total credit in the economy. The positive association between credit and the

slope of the yield curve is robust across subsamples and also after controlling for GDP

growth or changes in the slope. Through the lens of the model, the positive association

between credit and the slope of the yield curve is due to the presence of financial inter-

mediaries: A steeper (flatter) yield curve incentive intermediaries to expand (contract)

credit.

Term structure of conditional distributions. Recent literature has stressed the role of

financing conditions when forecasting the distribution of future real variables (Adrian

et al. (2019)). The term structure of distributions of real variables is related to the yield

curve because the former is a forecast of the conditional distribution of a random vari-

able —the marginal utility in the economy—at a certain point in the future, while the

18Minoiu et al. (2022) provide more granular evidence about the empirical relationship between term
premium and banks’ lending.

19I take the difference because the level of credit is nonstationary in the data. Alternatively, one could
use credit/GDP and results would be similar.

20Using quarterly data in the period 1971:Q3 to 2018:Q4 yield similar results than the long samples
considered in Table 2.
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latter is the expected value of a given payoff at a certain point in the future.21 I show the

key economic forces driving the yield curve, elaborated above, are also consistent with

the evidence about the term structure of conditional distributions of future outcomes.

To compute the term-structure of distributions, consider a process zt in the model

that follows an Ito process

dzt = µz,tdt + σz,tdWt,

where µz,t = µz (xt) and σz,t = σz (xt) are the drift and diffusion. Next, I define the

function f (xs|xt = x∗, s) as the conditional distribution of x at each point in time s > t,

starting from a point x∗. The evolution of the density over time can be described by the

following partial differential equation

∂ f (z (x) |x∗, t)
∂t

= − ∂

∂x
[ f (z (x) |x∗, t) µ (x)] +

1
2

∂2

∂x2

[
f (z (x) |x∗) σ (x)2

]
,

which is also known as the forward Kolmogorov equation (or Fokker-Planck equation).

Figure 2 shows the forecasted conditional distributions for consumption (top two

panels) and the state variable x (bottom two panels) at different horizons. The blue line

represents the forecasted densities conditional on current financial conditions being

loose. More precisely, the distributions are forecasted conditional on xt = x∗, where x∗

is 10% above the point at which financing constraints bind. The distribution in red rep-

resents the forecasted density conditional on current financial conditions being tight. I

assume xt is 10% below the point where financing constraints bind. The red dashed line

in all four panels represents the point in the state space at which financing constraints

21In technical terms, these two objects are the forward Kolmogorov equation and the backward Kol-
mogorov equations.
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bind.

In line with the evidence reported in Adrian et al. (2019), the top two panels in-

dicate that, conditional on the economy facing tight financial conditions, the distri-

bution of future consumption is negatively skewed. Also, the conditional distribution

fluctuates across the horizon, and the relatively negative skewness of the condition-

ally constrained distribution persists even in the 3-year ahead forecasted distribution.

The main source of the asymmetry between the constrained and unconstrained distri-

butions is that economic outcomes are quite different in the constrained and uncon-

strained regions. For example, in the constrained region the economy is more leveraged

(thus more sensitive to shocks), the real rate is much more volatile, and the price of risk

moves faster. These conditions may persist because it takes time for financiers’ wealth

to be rebuilt. Simply put, x is a persistent process.

The bottom two panels display the forecasted conditional distributions for the state

variable x. The intuition is similar to that of consumption growth. Tight financial con-

ditions are persistent and can trigger quite volatile and unstable outcomes. Simply

put, the model rationalizes the data with two main elements: Tighter financial condi-

tions are persistent outcomes, and they lead to quite different economic outcomes than

those implied by the economy functioning in an unconstrained region. As with the yield

curve, the key elements are the bimodal nature of the economy and the persistent dy-

namics of intermediaries’ wealth.
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4 Conclusion

Financial intermediaries hold long-term assets, which means fluctuations in the long-

term yields affect the extent to which intermediaries are financially constrained. These

constraints affect marginal valuations in the economy, not only of the intermediaries,

but in general equilibrium they affect other agents’ marginal valuations as well. Hence,

because long-term yields are forecasts of marginal valuations, financing constraints and

long-term yields are directly related with each other.

In this paper, I show that financing constraints generate an endogenously time-

varying real term premium that is consistent with the data. The nominal yield curve

is primarily driven by the real factor that captures the health on intermediaries’ bal-

ance sheets. The mechanism I propose can rationalize relevant yield curve facts, such

as an upward-sloping real yield curve and highly volatile long-term yields, which are in-

deed hard to capture in standard macro models (Duffee, 2018). These results are purely

driven by the fact that intermediaries’ financing constraints may occasionally bind, link-

ing the yield curve with intermediaries’ financial health.

The novel economic mechanism I propose, connecting intermediaries’ wealth and

the yield curve, can rationalize interesting macroeconomic phenomena, suggesting that

there are several potential avenues for further research. In particular, I show that a

changes in the slope of the yield curve affects the business cycle because the slope of

the yield curve is connected to intermediaries’ willingness to engage in maturity trans-

formation (and hence credit supply). Additionally, I show that the same mechanism ex-

plaining the term structure of interest rates is also able to rationalize the negative skew-

ness in the term structure of distributions of consumption when financing constraints

are binding.
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However, there are several important quantitative elements of yields that the model

cannot rationalize. For example, the model implies a positive correlation between bond

and stock returns, while the evidence show the sign of such correlation has changed

from positive to negative in the last few decades (Chernov, Lochstoer and Song (2023);

Campbell, Pflueger and Viceira (2020)). Also, the model cannot rationalize the time-

variation in yields’ conditional skewness, an important property of yields that helps in

understanding the time-variation of bond returns (Bauer and Chernov (2023)). Indeed,

the model implies that conditional skewness is always positive and such conditional

skewness has very little power for predicting bond returns. I speculate that incorporat-

ing additional state variables—for example by incorporating heterogenous intermedi-

aries and savers—could help in addressing some of these issues.
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5 Tables and Figures

TABLE 1. Calibration

PARAMETERS

Value Description

1. Preferences and Endowment

γ 5 Risk aversion

ψ 1/5 EIS

µ 0.007 Drift Yt

σ 0.036 Volatility Yt

2. Financiers

λ 0.08 Dividend payout

ω 0.85 Management cost

κ 0.4 Fraction divertible assets

3. Nominal rate

δπ 1.5 Taylor coefficient

λs 0.06 Persistence of monetary shocks

σs 0.0024 Volatility of monetary shocks

NOTES: This table shows the calibration of the model at an annual frequency.
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TABLE 2. Slope of the yield curve and credit

Dependent variable: ∆creditt

Full sample (1870-2016) Postwar (1946-2016)

Regressors (1) (2) (3) (4) (5) (6)

∆slopet−1 0.922** 0.909** 0.745** 1.182** 1.172** 0.831*

(0.386) (0.421) (0.366) (0.575) (0.613) (0.450)

∆creditt−1 0.598*** 0.600*** 0.609*** 0.517*** 0.523*** 0.510***

(0.091) (0.081) (0.083) (0.176) (0.155) (0.146)

∆gdpt−1 -0.014 -0.027 -0.034 -0.070

(0.897) (0.110) (0.228) (0.200)

slopet−1 0.323* 0.607**

(0.187) (0.278)

R2 0.344 0.344 0.349 0.311 0.316 0.345

Obs. 135 135 135 70 70 70

NOTES: The source of the data is Jordà et al. (2016). The dependent variable is ∆creditt, the log difference

of real credit (Total loans to non-financial private sector over CPI) from t − 1 to t. All regressions from

(1) to (6) include a constant (not reported). Heteroskedasticity- and autocorrelation consistent asymp-

totic standard errors reported in parentheses are computed according to Newey and West (1987) with the

automatic lag selection method of Newey and West (1994): *p<0.10; **p<0.05; and ***p<0.01.
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FIGURE 1. Model Solution
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NOTES: This figure shows the model solution, with the calibrated parameters from Table 1. The

red-dashed line represents the point of the state space in which the financial constraint binds.
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FIGURE 2. Model Solution: Yields

0 0.2 0.4 0.6 0.8 1

x

0.01

0.02

0.03

0.04

0.05

0.06

0.07

y
(1)

y
(10)

y
(30)

lim y
( )

5 10 15 20 25 30

maturity (years)

0.016

0.018

0.02

0.022

0.024

0.026

0.028

0.03

mean yield curve

NOTES: This figure shows the real yield curve in the model, with the calibrated parameters from

Table 1. The left panel shows yields for different maturities over the state-space. The right panel

shows the average yields.
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FIGURE 3. Real Yield Curve
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NOTES: This figure shows the real yield curve in the model, with the calibrated parameters from
Table 1. The top panel displays the yield curve for three different levels of x (mean, and +- 2
standard deviations). The bottom panel show the standard deviation of yields. The data for real
yields from Chernov and Mueller (2012) for the 1971-2002 period and TIPS data from Gürkaynak,
Sack and Wright (2010) for the 2003-2018. See the appendix for more details about the data.

37



FIGURE 4. Nominal Yield Curve
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NOTES: This figure shows the nominal yield curve in the model, with the calibrated parameters
from Table 1. The top panel displays the yield curve for three different levels of the persistent
monetary policy shock variable s (mean, and +- 2 standard deviations), when x is at its steady
state value. The bottom panel displays the yield curve for three different levels of the persistent
state variable x (mean, and +- 2 standard deviations), when s is at its steady state value. The data
for nominal yields is from Gürkaynak, Sack and Wright (2007). I provide details about the data
in the appendix.
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FIGURE 5. Term Premium and Bond Return Predictability
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NOTES: The upper-left panel shows the term premium of zero-coupon bonds of different matu-
rity. The upper-right panel shows the term structure of term premium when the state variable
x is at its unconditional mean. The bottom-left panel shows the estimated coefficients of the
Fama-Bliss regressions (shown in the main text) for simulated data from the model. The sim-
ulation consists of 200 paths with 100,000 realizations in each path. The confidence intervals
are the 5th and 95th percentile of the estimated coefficients in each path. The lower-right panel
shows the 5-year term premium and the forward-spot spread in the model.
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FIGURE 6. The Role of Risk Aversion and the EIS
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NOTES: The left panel shows the slope of the real yield curve (10-year minus 1-year spread) for
different parametrizations of the risk aversion and EIS coefficients. The right panel shows the
real rate across the state space for different parametrizations of the risk aversion and EIS coeffi-
cients, rescaled such that the real rate is the same in the first best for all parametrizations. The
baseline calibration is the one reported in Table 1, namely γ = 5 and ψ = 1/5.
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FIGURE 7. Slope and Credit
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NOTES: This figure shows the slope of the yield curve and the credit in the model. Credit is the
position of financiers’ short-term deposits as a share of total net worth.
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FIGURE 8. Term Structure of Conditional Distributions for Consumption
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NOTES: This figure shows the conditional distributions of consumption 1 and 3 years ahead (top
two panels), and the conditional distributions of the endogenous state variable x 1 and 3 years
ahead (bottom two panels). The distributions are conditional on the state of the economy being
an unconstrained one (blue lines) or a constrained one (red lines). The red dashed line is the
point in the state space at which constraints binds.
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7 Appendix

Proof of Proposition 2. I derive the law of motion of the endogenous state variable, xt,

which is key in solving the ODEs. Applying Itô’s lemma to
n f ,t
qt

:

dxt =
dn f ,t

qt
−

n f ,t

q2
t

dqt +
n f ,t

qt
(dqt)

2 − dqt

qt
dn f ,t + λ(xqt − λn f ,t)dt, (16)

where the last term, λxqt − λn f ,t, represents the initial capital received by intermedi-

aries, net of their aggregate dividends. Then, substituting the law of motion for qt and

n f ,t in (16), I get

dxt = xt

[
rt +

qtθ f ,t

n f ,t

(
Et
[
dR f ,t

]
− rt

)
− µq,t +

(
qtθ f ,t

n f ,t
− 1

)
σ2

q,t

]
dt +

xt

(
qtθ f ,t

n f ,t
− 1

)
σq,tdWt + λ (x− xt)dt.

Based on the previous expression, I denote the drift and diffusion as

xtµx,t = xt

[
rt +

qtθ f ,t

n f ,t

(
Et
[
dR f ,t

]
− rt

)
− µq,t +

(
qtθ f ,t

n f ,t
− 1

)
σ2

q,t

]
+ λ (x− xt) ,

xtσx,t = xt

(
qtθ f ,t

n f ,t
− 1

)
σq,t.

I next derive the system of ordinary differential equations for 5 unknown functions,

namely the price-dividend ratio p (x) , the financier’s marginal value of φ (x) , the saver’s

utility function ξ (x) , the real bond prices {P (x, τ)}τ≥0, and the nominal bond prices{
P$ (x, s, τ)

}
τ≥0 .

When the financing constraint is not binding, the first order conditions of financier’s
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problem is, when θ f ,t > 0,

Et
[
dR f ,t

]
− rtdt + Et

[(
dmt

mt
+

dφt

φt

)
dR f ,t

]
= 0. (17)

Equation (17) is the first equation in proposition 2 (i.e., the ODE for the price-dividend

in the unconstrained region). Then substituting (17) into the financier’s value function

(7) yields the second equation in the system (i.e., the ODE for financier’s marginal value

of wealth, φ). When financiers is constrained, the savers’ pricing equation is

Et [dRs,t]− rtdt + Et

[
dmt

mt
dRs,t

]
= 0. (18)

Equation (18) is the fourth equation in proposition 2, and replacing (18) into the fi-

nanciers’ value function gives the fifth equation.

Finally, the third and sixth equations are the savers’ value function. I denote the

value function with optimal policies as (c∗, U∗)

0 =
1

1− 1
ψ

{
ρ (c∗)1− 1

ψ [(1− γ)U∗]
1
ψ−γ

1−γ − ρ (1− γ)U∗
}
+ Et [dU∗] .

I guess and verify the solution is given by

U∗ =
(ξ (x) c∗)

1− γ

1−γ

.

Then, using Itô’s lemma and substituting, I get

0 =
ρ

1− 1
ψ

{
ξ

1
ψ−1 − 1

}
+ µc −

1
2

σ2
c +

ξx

ξ
xµx −

γ

2

(
ξxx

ξ
xσx

)2

+ (1− γ)
ξx

ξ
xσc.
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All drifts and diffusions terms in proposition 2, terms µp (x) , µφ (x) ,µξ (x) , µP (x, τ) , µc (x)

and σp (x) , σφ (x) , σξ (x) , σP (x, τ) , σc (x) are partial derivatives from applying Itô’s lemma

in their corresponding functions. That is,

µp (x) =
px

p
Et [dx] +

1
2

pxx

p
Et

[
dx2
]

,

µφ (x) =
φx

φ
Et [dx] +

1
2

φxx

φ
Et

[
dx2
]

,

µξ (x) =
ξx

ξ
Et [dx] +

1
2

ξxx

ξ
Et

[
dx2
]

,

µP (x, τ) =
P (τ)x
P (τ)

Et [dx] +
1
2

P (τ)xx
P (τ)

Et

[
dx2
]

,

and

σp (x) =
px

p
xσx; σξ (x) =

ξx

ξ
xσx; σξ (x) =

ξx

ξ
xσx; σP (x, τ) =

P (τ)x
P (τ)

xσx.

The drift and difussion for the nominal bond prices can be expressed in a similar way, in

terms of the partial derivatives, but include additional the extra terms associated with

of the exogenous state variable—the monetary policy shocks.

For consumption, use the market clearing condition for goods

ct =
[

ωαs
t (1− xt) + xtα

f
t

]
yt,

=
[

ω + (1−ω) xtα
f
t

]
yt,
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and apply Itô’s lemma:

µc =
(1−ω) xtα

f
t[

ω + (1−ω) xtα
f
t

] [µx +
φx

φ
xµx +

1
2

φxx

φ
(xσx)

2 +
φx

φ
xσ2

x +

(
φx

φ
x + 1

)
σxσ

]
+ µ,

σc =
(1−ω) xtα

f
t[

ω + (1−ω) xtα
f
t

] (ψx

ψ
x + 1

)
σx + σ.

Finally, I show rtdt = −Et

[
dmt
mt

]
. For this, I follow the characterization in Cox, In-

gersoll and Ross (1985a) and Duffie and Epstein (1992a). Savers’ problem is

0 = max
c,θs

1
1− 1

ψ

{
ρc1− 1

ψ [(1− γ)U]

1
ψ−γ

1−γ − ρ (1− γ)U

}
+ Et [dU] . (19)

subject to (2). Because U (x, n), I write

Et [dU] = UxEt [dx] +
1
2

UxxEt

[
dx2
]
+ UnEt [dn] +

1
2

UnnEt

[
dn2

]
+ UnxEt [dndx] .

The first order conditions (FOC) are

ρc−
1
ψ [(1− γ)U]

1
ψ−γ

1−γ = Un,

qUn (Et [dRs]− r) + Unnθsq2σ2
q + Uxnqσqσx = 0.

Then, I substitute the law of motion for n, and the first order conditions in (19) to get

0 =
ρψ

1− 1
ψ

[(1− γ)U]

1
ψ−γ

1−γ ψ U1−ψ
n − ρ (1− γ)U

1− 1
ψ

− ρψ [(1− γ)U]

1
ψ−γ

1−γ ψ U1−ψ
n

+Un [T + rn]− 1
2

Unn (θ
sq)2 σ2

q + UxEt [dx] +
1
2

UxxEt

[
dx2
]

. (20)
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The next step is to take the derivative of (20) with respect to n. After some algebra,

0 =

[( 1
ψ − γ

1− γ

)(
ψ

ψ− 1

)
Un

U
− Unn

Un

]
ρψ [(1− γ)U]

1
ψ−γ

1−γ ψ U1−ψ
n

−ρ (1− γ)

1− 1
ψ

Un

+Unn [T + rn] + Unr

−1
2

Unnn (θ
sq)2 σ2

q + UnxEt [dx] +
1
2

UnxxEt

[
dx2
]

. (21)

The final step is to subtract the stochastic discount factor from the expression above.

For this, following Duffie and Epstein (1992a),

dmt

mt
=

d fc

fc
+ fU dt,

with

fU =

1
ψ − γ

1− 1
ψ

ρψ [(1− γ)U]
(1−ψ)γ

1−γ U1−ψ
n − ρ (1− γ)

1− 1
ψ

,

fc = ρc−
1
ψ [(1− γ)U]

1
ψ−γ

1−γ .

From FOC, I have that fc = Un, so the SDF mt can be written as

dm
m

=
Unn

Un
[rn + T]− ρψ [(1− γ)U]

1
ψ−γ

1−γ ψ U−ψ
n

Unn

Un
− 1

2
Unnn

Un
(θq)2 σ2

q

+
Unx

Un
Et [dx] +

1
2

Unxx

Un
Et

[
dx2
]

+

1
ψ − γ

1− 1
ψ

ρψ [(1− γ)U]
(1−ψ)γ

1−γ U1−ψ
n − ρ (1− γ)

1− 1
ψ

. (22)
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Finally, subtract (21) from (22) and obtain Et

[
dm
m

]
= −rtdt.

Consumption and price-dividend during financial disruptions. The figure below shows

the consumption losses (left panel) and changes in the price-dividend ratio (right panel)

across the state space.22 The vertical red-dashed line shows the point in the state space

at which the invariant distribution accumulates is 1% probability.

FIGURE A.1. Consumption and Price-Dividend
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As shown in the figure A.1, it is very unlikely that, in the model’s equilibrium, con-

sumption losses will exceed -7% and the price-dividend ratio changes exceed -28.8% in

a given year. Muir (2017) shows that declines in consumption and the price-dividend ra-

tio associated with financial crises—defined as a banking panic or banking crisis—are

broadly in line with the model: the evidence for financial crises indicates that those

22In equilibrium, ct
yt

= ω + (1−ω) xtα
f
t .
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episodes are associated with an average decline of approximately 25% in price-dividend

ratio and a 9% decline in consumption levels.23 Additionally, Greenwood et al. (2022)

show, using a very similar dataset than Muir (2017), that the unconditional probability

of a financial crises is 4%.24 Hence, the evidence points to rare occasions (4% prob-

ability) in which financial intermediaries wealth is unpaired and those occasions are

characterized by approximately 9% consumption losses and a 25% decline in the price-

dividend ratio, which similar to the model implications.

Data. The source of data for real yields used in Figure (2) is Chernov and Mueller (2012)

during the period 1971-2002 and Gürkaynak et al. (2010) for TIPS during 2003-2018. The

data from Chernov and Mueller (2012) can be easily accessed at the Muller’s website.

The data for nominal yields in Figure 4 is from Gürkaynak et al. (2007) for the period

1971-2018. The table below shows the mean and standard deviation of real and nominal

yields, which are the statistics used in figures 2 and 4. The following table shows the

summary statistics, expressed in decimals at an annual frequency.

TABLE A.1. Summary Statistics on TIPS and Nominal Treasuries.

1y 2y 3y 5y 7y 10y

TIPS

Average 0.016 0.017 0.018 0.020 0.021 0.023

St. Dev. 0.019 0.017 0.016 0.015 0.013 0.012

Nominal

Average 0.052 0.054 0.056 0.059 0.062 0.064

St. Dev. 0.035 0.034 0.033 0.032 0.030 0.029

23More details about the definition of financial crises can be found in Muir (2017), Section 2.
24Jordà et al. (2016)
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Numerical method. I use a spectral collocation method based on Chebyshev polynomi-

als of the first kind to solve the numerically solve the model. Conceptually, the numeri-

cal solution consists of representing the unknown functions as Chebyshev polynomials

on a grid and then substitute them into the ODEs characterizing the equilibrium. In

particular, I solve for: i) The financiers’ value functions; ii) the price-dividend ratio; iii)

the savers’ value function; iv) real bond prices; and v) nominal bond prices. The system

of equations is in proposition 2 in the text and the detailed derivation is in the appendix.

The steps are as follow

1. First, construct a grid with K Chebyshev nodes

hi = cos
(

2i + 1
2 (K + 1)

π

)
, i = 0, ..., K.

Therefore, hi ∈ [−1, 1] . Since in the model x ∈ (0, 1), I express the grid on x as

xi =
1
2 (1 + hi).

2. Then, a given function g(x) that needs to be solved, can be written in a polynomial

form

g(x) =
K

∑
i=0

aiΨi (hi (x)) + O (K) ,

where K is the order of the polynomial, Ψ is the basis function (which in this case is

the Chebyshev polynomials), {ai}K
i=0 are unknown coefficients that need to solved,

hi are the Chebyshev nodes, and O (K) is an approximation error.

3. Then, solve for the associated set of unknown coefficients {ai}K
i=0 in each function,

such that equilibrium conditions are verified.

(a) Start with a guess for the unknown coefficients.
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(b) For a guessed solution, use financiers’ optimality condition to compute x∗,

which is the point at which the leverage constraint binds. That is, the point at

which α f ,t = 1/xt becomes α f ,t = φt/κ.

(c) Solve the corresponding system of equations with a non-linear solver and ver-

ify.

4. Once the equilibrium is solved, I solve the yield curve using forward finite differ-

ence across the maturity dimension. That is, starting from P(0)(x) = 1, solve for

the bond prices in the state space (using the steps above) and iterate across the

maturity dimension with

P(τ+∆) (x)− P(τ) (x)
∆

≈ P(τ)
τ (x) .
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FIGURE A.2. Bi-variate distribution of x and monetary policy shocks.

NOTES: This figure shows the invariant distribution of the endogenous state variable, x, and the
exogenous state variable, monetary policy shocks.

57


	Model
	Model Solution
	Results
	Conclusion
	Tables and Figures
	Bibliography
	Appendix

