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Abstract

I study the yield curve dynamics in a general equilibrium model with financial

intermediaries facing financing constraints. When constraints bind, intermediaries

reallocate their portfolio, causing deadweight losses in aggregate consumption, thus

affecting savers’ marginal utility. Because the yield curve is a forecast of marginal

utility, intermediaries constraints show up, via general equilibrium forces, in long-

term yields. I show that the mechanism connecting intermediaries constraints and

long-term yields produces highly nonlinear interest rate dynamics and a positive

real term premium in equilibrium. I extend the analysis to the nominal yield curve

using a simple Taylor rule.
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One of the main lessons of the large body of research on the nexus between financial

intermediation and the macroeconomy is that financial intermediaries face constraints

that distort the allocation of goods and capital—hence affecting agents’ marginal valua-

tions. In this paper, I argue that the yield curve contains information about such distor-

tions because long-term yields are, by definition, a forecast of the economy’s marginal

valuation (Alvarez and Jermann (2005)). In other words, intermediaries’ constraints are

a macro source of term premia, which means long-term yields and intermediaries’ bal-

ance sheet dynamics are closely related.

More precisely, I study a canonical general equilibrium intermediary asset pricing

model to underscore the mechanism through which intermediaries’ constraints pro-

duce a positive term premium. I show that the connection between intermediaries’ con-

straints, marginal utility, and long-term yields help us in rationalizing the salient prop-

erties of the U.S. real and nominal yield curves. In particular, the model features highly

nonlinear real yields, with an average upward-sloping real and nominal yield curve and

highly volatile long-term yields, facts that have proven very difficult to match in repre-

sentative agent models (Duffee (2018)). These results are purely driven by the fact that

financial intermediaries face occasionally binding constraints. Indeed, if intermediaries

were always unconstrained, then the yield curve would be flat and constant.

The mechanism is grounded in two main elements: Intermediaries operate with

leverage in equilibrium (i.e., there is borrowing and lending between savers and inter-

mediaries), and they face financing constraints. These two elements have been exten-

sively studied in the macro-finance literature, but in this paper, I focus the analysis on

the yield curve.1 To obtain leverage in equilibrium, I follow Brunnermeier and San-

1Recent literature, reviewed later, has departed from the representative agent analysis of the yield
curve but without stressing the role of financing constraints—a salient characteristic of intermediaries.
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nikov (2014), among others, and I assume intermediaries are more efficient than savers

in handling risky assets. That is, financial intermediaries issue short-term deposits to

savers to fund positions in long-term risky assets and take advantage of their relatively

better investment technology. However, intermediaries’ positions in long-term risky as-

sets can be constrained in certain states of the world because of agency problems, as

in Gertler and Kiyotaki (2015). As a consequence, when intermediaries hit their con-

straints, they are forced to sell risky assets to less efficient savers, and, subsequently, ag-

gregate consumption and asset prices decline, the price of risk increases, and the wealth

of financial intermediaries deteriorates even further, which force intermediaries to real-

locate their portfolios, and so on. This well-known feedback mechanism has important

implications for the yield curve, as I detail next.

The presence of occasionally binding constraints implies the economy features a

bimodal distribution: It spends the vast majority of time in a “normal regime,” in which

constraints are slack, risk premia are low, the real interest rate is low, and volatility of as-

set prices is moderate. When negative aggregate shocks occur, the economy can enter

a “crisis regime,” in which financing constraints are binding. Here, intermediaries real-

locate their portfolios, and wealth is transferred to inefficient savers. Savers’ inefficien-

cies in handling risky assets cause deadweight losses and push the consumption level

persistently below the trend growth, and, therefore, the real interest rate persistently in-

creases as agents perceive the crisis regime as transitory—the consumption level will

recover its trend in the future.2 But this dynamic occurs precisely when the price of risk

spikes, implying that real bond prices go down in states in which the marginal investor

values those resources the most—a crisis regime. Thus, real bonds carry an endoge-

2I show that the nonlinear increase in the real rate when financing constraints binds depends mostly
on the magnitude of savers’ elasticity of intertemporal substitution.
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nously time-varying term premium, and the yield curve is upward sloping, on average,

due to the fact that there is always a nonzero probability the economy can hit financing

constraints.

I extend the analysis to study the nominal yield curve by introducing a simple mon-

etary policy rule that is subject to persistent monetary shocks. The monetary policy rule,

which takes the form of a Taylor rule, pins down an equilibrium inflation process that

depends on the state of the economy as well as on persistent monetary policy shocks.

The equilibrium nominal yield curve is consistent with the empirical evidence as long as

the reaction function of the monetary policy rule with respect to inflation is greater than

one-for-one. As noted in Schneider (2022), if the model can capture the main properties

of the real yield curve, then the nominal yield curve can be simply rationalized with an

empirically plausible Taylor rule (i.e., a rule in which the monetary authority adjusts the

interest rate more than one-for-one with inflation). I extend the analysis in Schneider

(2022) to include persistent monetary policy shocks and therefore have a flexible envi-

ronment in which the nominal yield curve is driven by both real and nominal shocks.

Besides accounting for the salient properties of the real and nominal yield curves

(violation of the expectation hypothesis, a positive average term premium, highly volatile

long-term yields, and the bond return predictability), I show that the mechanism re-

lating intermediaries’ wealth and the yield curve can be extended to study the term

structure of the conditional distributions of macroeconomic outcomes. The purpose

of this exercise is to illustrate that the mechanism in the model, grounded on occasion-

ally binding constraints, can rationalize evidence beyond the scope of the yield curve,

therefore providing external validation of the key economic forces in the model.

Recent literature has stressed the role of financial conditions in driving the distri-
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bution of real variables in the near future (Giglio, Kelly and Pruitt (2016); Adrian, Bo-

yarchenko and Giannone (2019)). More precisely, when financial conditions deterio-

rate, the forecasted conditional distribution of GDP growth becomes more negatively

skewed. Moreover, this distribution changes with the forecast horizon; there is a term

structure of conditional distributions. The conditional distributions of real variables are

intimately related to the yield curve, because long-term yields are a conditional expec-

tation of future variables, while the forecasted distribution consists of computing the

entire distribution of future realizations. To rationalize the evidence, I compute the term

structure of the conditional probability density function of consumption and interme-

diaries’ wealth. This is the model’s theoretical counterpart of the estimated conditional

distributions in, for example, Adrian et al. (2019). I show the model captures the ev-

idence relatively well: Conditional on a state in which intermediaries are constrained

(tight financial conditions), the term structure of conditional distributions of consump-

tion exhibits a negative skewness. When financial conditions are loose, the negative

skewness vanishes, and the term structure of conditional distributions is roughly Gaus-

sian.

Related Literature. This paper relates to a strand of literature that has departed from

the representative agent analysis of the yield curve. In this line, part of the literature has

stressed the role of certain agents (arbitrageurs, intermediaries, etc.) in explaining the

yield curve dynamics, typically in a partial equilibrium setup (Greenwood and Vayanos

(2014); Haddad and Sraer (2019); Vayanos and Vila (2021)). Relative to this literature, the

contribution of this paper is to use a general equilibrium framework to study the role of
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financing constraints in driving the yield curve dynamics.3

The general equilibrium framework I build on (see, for example, He and Krishna-

murthy (2013), Brunnermeier and Sannikov (2014), and Gertler and Kiyotaki (2015),

among many others) has been extensively studied in the macro-finance literature to an-

swer a variety of questions, particularly after the Great Recession. For example, Gertler

and Karadi (2011) study unconventional monetary policies, Van der Ghote (2021) stud-

ies the coordination of conventional and macroprudential policies, Maggiori (2017) stud-

ies the risk sharing dynamics between countries that differ in their degree of financial

development, and Bigio and Schneider (2017) analyze the role of financing constraints

and liquidity shocks in driving the equity premium. Relative to this literature, the con-

tribution of this paper is to shift the focus away from equities (or “capital”) to the yield

curve dynamics. In particular, I show that financing constraints play a crucial role in

producing an endogenously time-varying real term premium. Also, I show that the con-

nection between the yield curve and financial intermediaries’ wealth is important for

understanding why tight financing constraints imply a negatively skewed distribution

of future economic outcomes.

1 Model

I propose a general equilibrium model with a financial intermediary sector along the

lines of He and Krishnamurthy (2013), Brunnermeier and Sannikov (2014), and Gertler

and Kiyotaki (2015) and focus on the pricing implications for the yield curve. I first

3Other papers have studied the yield curve in a general equilibrium setup with heterogeneous agents
(see for example, Wang (1996), Ehling, Gallmeyer, Heyerdahl-Larsen and Illeditsch (2018), and Schneider
(2022), among others) but without financing constraints.
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solve for the real equilibrium and derive the real yield curve. I next extend the analysis

to include a monetary policy rule and derive the nominal yield curve.

Time is continuous and denoted by t > 0. Aggregate output, denoted by Yt, follows

dYt

Yt
= µdt + σdWt,

where parameters µ > 0, σ > 0 are constants and Wt is a standard Brownian motion in

a complete probability space (Ω, F, P) .

The economy is populated by a continuum of savers (denoted by s) and a contin-

uum of financiers (denoted by f ). Financiers are in charge of managing financial firms,

which are owned by savers, while the savers maximize their discounted utility from con-

sumption. Both f and s are allowed to trade risky assets, but a key difference between

f and s is that the former have a comparative advantage over the latter in operating

risky assets over the latter—which implies f and s engage in borrowing and lending in

equilibrium.4

Agents can trade two classes of assets—namely, long-term risky assets and short-

term risk-free deposits. The long-term asset is in exogenous fixed supply, and I denote

its ex-dividend price by qt. This asset pays a dividend Yt per unit of time if held by f , but

it pays ωYt, ω < 1, if held by s. That is, it is more costly for savers than financiers to op-

erate this risky asset.5 The purpose of this assumption is to obtain endogenous leverage

in equilibrium, in the same way as in Brunnermeier and Sannikov (2014): Financiers

4Although my assumption about f and s having different expertise in handling the risky assets dif-
fers from that of He and Krishnamurthy (2013)—who assume that markets are segmented and that only
“specialists” can trade risky assets—the asset pricing implications of both assumptions are similar (see
Brunnermeier, Eisenbach and Sannikov (2013)).

5This assumption about ω is equivalent to assuming that savers have to pay a cost to operate risky
assets (Gertler and Kiyotaki (2015)).
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have an advantage in handling risky assets and therefore will borrow from savers to take

leveraged positions in risky assets. A direct consequence of assuming ω < 1 is that

when financiers’ wealth is impaired and savers are handling risky assets, the aggregate

dividend (and, in equilibrium, consumption) will decline.

The total return of investing in the long-term asset consists of the dividend yield

plus the capital gains. For financiers, this return is

dR f ,t =
Yt

qt
dt +

dqt

qt
,

while for savers, the total return is

dRs,t =
ωYt

qt
dt +

dqt

qt
, ω < 1.

Second, the short-term deposit account is in zero net supply, and it yields a risk-free

interest rate, denoted by rt. For simplicity, I solve the model with the generic long-term

asset qt and the short-term deposit account.Later, I introduce zero-coupon bonds of

all maturities that are also in zero net supply. That is, zero coupons are redundant in

the construction of the equilibrium, but they are useful to characterize the economy’s

equilibrium yield curve.

Savers consume and save. They have recursive preferences as in Duffie and Epstein

(1992b) and their utility function is given by

Ut = Et

[∫ ∞

t
f (cu, Uu)du

]
,
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where

f (c, U) =
ρ

1− 1
ψ

 c1−1/ψ

[(1− γ)U]

(
γ− 1

ψ

)
/(1−γ)

− (1− γ)U

 . (1)

In (1), c is savers’ consumption, ρ is the time preference, ψ is the elasticity of intertem-

poral substitution (EIS), and γ is the risk aversion.

Savers’ problem consists of choosing how much to consume and save in order to

maximize their expected discounted utility. They can allocate their portfolios between

risk-free deposits issued by financiers and can also hold risky assets. Their optimization

problem can be written as

max
{ct,θs,t}

Ut,

subject to

dns,t = [ns,trt − ct + qtθs,t (Et [dRs,t]− rt) + Tt]dt + qtθs,tσq,tdWt, (2)

ns,t ≥ 0,

where ns,t is the savers’ net worth, θs,t is the holding of the risky asset, and Tt is net trans-

fers received from financiers’ profits. Transfers are locally riskless because I assume later

that the dividend policy implemented by financiers is so.

Financiers are in charge of managing a financial intermediary firm. They operate

this firm by issuing deposits to savers as well as using their own wealth, n f ,t, but they

face financing constraints (described later). Their objective is to manage the financial

intermediaries’ portfolio, and financiers do not consume.6 Instead, they pay dividends

6The assumption that financiers do not consume is different than in Brunnermeier and Sannikov
(2014). Assuming there is perfect consumption insurance between the savers and the financiers simpli-
fies the solution of the model and the analysis of the yield curve, because savers are in charge of pricing
consumption across time.
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to savers. To avoid financiers growing out of their constraints, I follow Gertler and Kiy-

otaki (2015) and assume a simple dividend policy in which dividends follow an exoge-

nous Poisson process with intensity λ. After paying dividends, financiers receive a frac-

tion x of the economy’s total wealth to restart the financial firm.7 Financiers’ problem

is to maximize the value of the firm (i.e., the expected discounted value of firms’ divi-

dends)—that is,

Vf ,t = max
{θ f ,t}

Et

[∫ ∞

t

mu

mt
λe−λ(u−t)n f ,udu

]
, (3)

subject to

dn f ,t =
[
rtn f ,t + qtθ f ,t

(
Et
[
dR f ,t

]
− rt

)]
dt + θ f ,tqtσq,tdWt, (4)

Vf ,t ≥ κθ f ,tqt, (5)

n f ,t ≥ 0,

where mt is savers’ marginal utility, defined later, and θ f ,t is financiers’ holdings of the

risky asset. Financiers face a financing constraint, (5), that can be motivated with a

standard agency problem. Specifically, I follow Gertler and Kiyotaki (2015) and assume

the value of the financial intermediary firm has to be greater than a fraction of the assets

the firm holds. This constraint operates as an endogenous leverage constraint.

I next define a competitive equilibrium.

Definition 1 (Competitive Equilibrium) A competitive equilibrium is a set of aggregate

stochastic processes: prices—qt, rt; policy functions for savers (θs,t, ct); policy functions for

financiers
(
θ f ,t
)

; the value of the financiers’ firm Vf ,t; and the utility of savers Ut—such

7In the appendix, I rationalize x as a tax to dividends received by savers as well as a capital requirement
to start a financial firm.
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that

1. Given prices, (θs,t, ct) solves savers’ problem

2. Given prices,
(
θ f ,t, Vf ,t

)
solves financiers’ problem

3. Markets clear (long-term asset, consumption good, and short-term debt):

θs,t + θ f ,t = 1,

ct = ωθs,tYt + θ f ,tYt,

n f ,t + ns,t = qt,

where the last equation (market clearing for short-term debt) is redundant due to Walras’s

Law but is useful to explicitly show that wealth holdings add up to total wealth qt.

The market clearing condition for the goods market, which shows that consumption

must be equal to aggregate dividends, is crucial for understanding the results. When

savers hold risky assets, θs,t > 0, aggregate consumption falls because there are dead-

weight losses associated with savers handling risky assets. One interpretation of the

assumption about ω is that financiers lend resources to firms that are more produc-

tive than savers when producing consumption goods, as in Brunnermeier and Sannikov

(2014). An alternative interpretation is that savers need to pay a cost when holding risky

assets, which captures savers’ lack of expertise relative to financiers in screening and

monitoring investment projects, as in Gertler and Kiyotaki (2015). I provide further dis-

cussion in the appendix about the quantitative implications of ω < 1 for consumption

and the price of risky capital, and I contrast those implications with the evidence.
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Before turning to the solution of the model, it is useful to characterize agents’ op-

timization problems with their first-order conditions. For savers, denoting mt as their

stochastic discount factor, we have

rt = −Et

[
dmt

mt

]
,

and

Et [dRs,t]− rtdt ≤ −Et

[
dmt

mt
dRs,t

]
, (6)

with equality if households are holding long-term assets (i.e., θs,t > 0). The savers’

stochastic discount factor, as noted in Duffie and Epstein (1992b), is given by

dmt

mt
=

d fc,t

fc,t
+ fU,tdt,

where fc and fU are the partial derivative of the aggregator (1) with respect to c and U,

respectively.

The optimality conditions for financiers require a few more steps. First, notice that

because financiers’ objective function and constraints are linear in wealth, their value

function can be written as

Vf ,t = φtn f ,t, (7)

where φt ≥ 1 can be interpreted as financiers’ marginal value of wealth (as well as a

“Tobin’s q”).8 Notice that φt is an endogenous Itô process whose drift µφ,t and diffusion

8See Gertler and Kiyotaki (2015).
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σφ,t are solved in equilibrium. Then the financing constraint can be written as

φtn f ,t ≥ κθ f ,tqt,

φt ≥ κ
θ f ,tqt

n f ,t
≡ κα f ,t, (8)

where α f ,t is the endogenous financiers’ portfolio share in the risky asset. Financiers’

problem can be written as

0 = max
θ f ,t

λ
(
n f ,t −Vf ,t

)
mtdt + Et

[
d
(
mtVf ,t

)]
+ χt

(
Vf ,t − κθ f ,tqt

)
dt, (9)

where χt is the Lagrange multiplier associated with the financing constraint. Using (7)

and (9), the first-order conditions for financiers can be written as

Et
[
dR f ,t

]
− rtdt ≥ −Et

[(
dmt

mt
+

dφt

φt

)
dR f ,t

]
, (10)

with equality if χt = 0. Put differently, financiers are the marginal investors in long-term

risky assets if their constraints are not binding. If financing constraints are binding, then

their holdings in risky assets are pinned down by such constraints (i.e., φt = κα f ,t), and

savers are the marginal investors in risky assets.

Real Yield Curve. I next characterize the yield curve in the economy, which consists

of the endogenous price vector for real bonds denoted by
{

P(τ)
t

}
τ≥0

, where τ repre-

sents the time to maturity of the bond. Yields can then be obtained simply as y(τ)t =

− log P(τ)
t /τ. I assume that a saver is the marginal investor in long-term zero-coupon

real bonds. Intuitively, a saver is the marginal investor in the risk-free deposit, which is

the relative price of a unit of consumption in the present versus the next instant. Hence,
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it is natural to assume that a saver is also the marginal agent when pricing long-term

bonds, which are the relative price of a unit of consumption in the present versus the

near future. The real bond price with time to maturity τ is given by

P(τ)
t = Et

[∫ t+τ

t

mu

mt
du
]

,

which can be written as

Et

[
dP(τ)

t

P(τ)
t

]
− rtdt = −covt

(
dmt

mt
,

dP(τ)
t

P(τ)
t

)
.

Note that, even though a saver is the marginal investor pricing long-term bonds,

financial constraints show up in the yield curve indirectly because, in general equi-

librium, they distort the allocation of goods and capital—hence afecting the saver’s

marginal utility. In other words, financing contraints are relevant not because they

impede or distort the pricing of the zero-coupon bonds, but because they affect the

equilibrium allocation of goods and risky capital, hence affecting the marginal utility of

agents that can price the bonds without frictions.

Importantly, my setup cannot answer whether financiers are relatively more rele-

vant for the dynamics of the term premium in the yield curve or for the dynamics of

the risk premium in the risky endowment. As shown in Haddad and Muir (2021), in-

termediaries risk bearing capacity is relatively more relevant for assets that relatively

more intermediated (i.e., those asset classes that are more costly for savers to trade).

There are at least three reasons for why my model cannot capture the extent to which

financiers’ risk bearing capacity matter more for long-term bonds or the risky endow-

ment claim. First, in my setup, there is no exogenous variation to intermediaries risk
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bearing capacity.9 Instead, financiers risk bearing capacity fluctuates endogenously af-

ter fundamental shocks hit the economy. Second, long-term bonds do not affect the

equilbrium allocation, but they simply reflect the intertemporal price of consumption

in the economy. Thus, in not possible to make a clean comparison between a cross sec-

tion of assets that differ in their trading costs—a feature that is critical in rationalizing

the results in Haddad and Muir (2021). Finally, the costs associated with trading one

asset (the endowment claim, where the trading costs can be captured by ω) affect the

other asset (long-term bonds) via general equilibrium forces.

I next extend the analysis to study the nominal yield curve.

Nominal Yield Curve. To compute nominal bond prices, I need to introduce money

in the analysis. For this, I follow an extensive literature in term structure analysis in

endowment economies and assume money is simply a unit of account (i.e., the con-

sumption good is quoted in terms of money) that does not affect the real allocation (see

Cox, Ingersoll and Ross (1985b), among others). More precisely, I assume that the infla-

tion rate is pinned down endogenously by a monetary authority that follows an interest

rate rule subject to monetary policy shocks. In short, the setup I propose is akin to a

two-equation New Keynesian model, because I assume there is no Phillips curve.10 For

this setup, I first define the nominal stochastic discount factor as

m$
t =

mt

pt
, (11)

where pt is the price level (i.e., the price of one unit of the consumption good in terms of

money). I assume the price level fluctuates smoothly (i.e., is not affected by Brownian

9This exogenous variation could come from shocks to the tighteness of financiers constraint, for ex-
ample.

10See Gaĺı (2015), chapter 2.
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shocks),11

dpt

pt
= πtdt,

so that πt is the inflation rate. I assume the price-level dynamics are pinned down by

a central bank following a Taylor Rule. That is, the central bank sets a nominal interest

rate iCB
t as

iCB
t = δ0 + δπ(πt − π) + st, (12)

where st is a persistent random variable capturing monetary policy surprises, δπ is the

so-called Taylor loading on inflation, and π is an inflation target (which can be absorbed

by the constant δ0). The monetary policy surprises follow

dst = −λsstdt + σsdWs,t,

where Ws,t is a monetary policy shock uncorrelated with the endowment shock. Then,

in equilibrium, the iCB
t must equal the nominal interest rate priced by savers

iCB
t dt = −Et

[
dm$

t

m$
t

]
. (13)

Using Itô’s lemma on (11) and replacing in (13), I obtain an endogenous inflation pro-

cess,

πt =
rt − st − δ̂0

δπ − 1
,

11Implicitly, the assumption is that the monetary authority has the tools to pin down a smooth price
level; see Di Tella and Kurlat (2021).
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with δ̂0 = δ0 − δππ. Then, the price of a nominal bond with time to maturity τ is

P$,(τ)
t = Et

[∫ t+τ

t

m$
u

m$
t

du

]
.

2 Model Solution

I use the homogeneity property of objective functions and constraints to solve the equi-

librium in a recursive fashion, employing a single endogenous state variable,

xt =
n f ,t

qt
∈ [0, 1] . (14)

The endogenous state variable, xt, is the net worth of financiers as a share of total wealth

in the economy, and it captures how well capitalized financiers are. In particular, low

values of xt represent states in which financiers are more constrained and savers are

holding a positive amount of the risky asset, which causes lower levels of consumption

because of the inefficiencies associated with savers handling risky assets.

The model’s solution consists of solving the endogenous variables in a Markov equi-

librium in xt. I next characterize the equilibrium as a system of ordinary differential

equations (ODEs) using the optimality conditions for savers and financiers as well as

the market clearing conditions defined in definition 1. For any endogenous variable

z(x), I denote its drift and diffusion by µz,t and σz,t, respectively.
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Proposition 1 The Markov equilibrium is characterized by the following system of ODEs.

When the financing constraint (8) is slack (i.e., ∀x ≥ x∗ where φ(x)
κ > α (x)),

0 =
1

p (x)
+ µp (x) + µ + σp (x) σ− r (x) +

(
σφ (x)− γσc (x) +

(
1
ψ
− γ

)
σξ (x)

) (
σp (x) + σ

)
,

0 =
λ (1− φ (x))

φ (x)
+ µφ (x)−

(
γσc (x) +

(
1
ψ
− γ

)
σξ (x)

)
σφ (x) ,

0 =
ρ

1− 1
ψ

{
ξ (x)

1
ψ−1 − 1

}
+ µ− γ

2
σ2 + µξ (x)− γ

2
σξ (x)2 + (1− γ) σξ (x) σ.

When the financing constraint (8) is binding (i.e., ∀x < x∗, where φ(x)
κ = α (x)),

0 =
ω

p (x)
+ µp (x) + µ + σp (x) σ− r (x) +

((
1
ψ
− γ

)
σξ (x)− γσc (x)

) (
σp (x) + σ

)
,

0 =
λ (1− φ (x))

φ (x)
+

φ (x)
κ

(
(1−ω)

p (x)
+ σφ (x)

(
σp (x) + σ

))
+ µφ (x)−

(
γσc (x) +

(
1
ψ
− γ

)
σξ (x)

)
σφ (x) ,

0 =
ρ

1− 1
ψ

{
ξ (x)

1
ψ−1 − 1

}
+ µc (x)− γ

2
σc (x)2 + µξ (x)− γ

2
σξ (x)2 + (1− γ) σξσc (x) .

The real interest rate is r(xt) = −Et

[
dmt
mt

]
, where mt = exp

(∫ t
0 fUdu

)
fc, real bonds are

P (x, τ) = Et

[∫ τ
t

mu
mt

du
]

, and nominal bonds are P$ (x, τ) = Et

[∫ τ
t

m$
u

m$
t

du
]

, solving

0 = −Pτ (x, τ)

P (x, τ)
+ µP (x, τ) +

1
2

σP (x, τ)2 − r (x)−
(

γσc (x) +
(

1
ψ
− γ

)
σξ (x)

)
σP (x, τ) ,

0 = −P$
τ (x, s, τ)

P$ (x, s, τ)
+ µ$

P (x, s, τ) +
1
2

σ$
P (x, s, τ)2 − i (x, s)−

(
γσc (x) +

(
1
ψ
− γ

)
σξ (x)

)
σP$ (x, s, τ) ,

with P (x, 0) = 1 ∀x and P$ (x, s, 0) = 1, ∀ (x, s). The terms µp (x), µφ (x), µξ (x), µc (x),

µP (x, τ), µ$
P (x, s, τ), σp (x), σφ (x), σξ (x), σc (x), σP (x, τ), and σP$ (x, s, τ) are partial

derivatives obtained by applying Itô’s lemma in their corresponding functions. The law

of motion for x, as well as additional boundary conditions, is shown in the appendix.

Proof. See appendix.
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The aforementioned proposition shows the system of ODEs that solves for financiers’

marginal value φ (xt); the price-dividend ratio p (xt) = qt/Yt; savers’ value function

U(x, c); and real and nominal bond prices. The first three equations show the conditions

when the financing constraint is slack. In such a region of the state space, the risky asset

is held only by financiers (i.e., θ f ,t = 1). The first expression shows the pricing equation

for the risky asset, coming from financiers’ first-order condition. The second expres-

sion pins down financiers’ marginal value of wealth, φt, which is coming from introduc-

ing the first-order conditions into financiers’ value function (9). The third expression

solves for savers’ value function, using the transformation Ut = (ctξ(xt))(1−γ)/(1− γ)

and solving for ξ(xt).

The second set of equations shows the system when financiers’ financing constraint

is binding (so savers hold a fraction of the risky asset). The fourth equation shows

the equilibrium condition for the risky asset, the fifth equation shows financiers’ value

function, and the sixth equation shows savers’ value function (using the transformation

mentioned in the previous paragraph). Finally, the last two equations are the pricing

formulas for real and nominal bond prices, respectively.

Importantly, the point in the state space in which the constraint becomes binding,

x∗, is characterized as follows. When x is high, financiers are well capitalized, their fi-

nancing constraint is slack, and, as a result, they hold the risky asset using a moderate

amount of leverage. That is, when xt > x∗, we have φt > κα f ,t = κ/xt, where the last

equality holds by the market clearing condition in the risky asset. As xt declines, fi-

nanciers’ leverage increases, and excess returns increase, until a point, x∗, in which the

constraint starts to bind and savers hold a positive amount of the risky asset.12

12I provide more details about how to find x∗ in the appendix, where I describe the numerical algorithm
to solve the model.
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3 Results

Calibration. I calibrate the model at an annual frequency and solve it using a global

solution technique based on projection methods. I provide a detailed description of the

solution method in the appendix. Table 1 shows the three groups of parameters—namely,

Preferences and Endowment, Financiers, and Nominal Rate. First, for Preferences and

Endowment, as I highlight later, the risk aversion (γ) and the EIS (1/ψ) play a critical

role in pinning down the dynamics of the real interest rate and the yield curve. This is

because γ and ψ control the relative strength of the precautionary savings (i.e., changes

in the interest rate followed by changes in the volatility of consumption) and intertem-

poral substitution (i.e., changes in the interest rate caused by changes in the expected

change of consumption) forces. In the baseline calibration, I set γ = 5 and ψ = 1/5,

which means the savers have CRRA (constant relative risk aversion) preferences. I later

relax this assumption and solve the model with alternative preference parametrization

and explain why the EIS plays a critical role in the results. For the endowment, I set

σ = 0.036, a number that is in line with the volatility of productivity in the US and close

to the value used in He and Krishnamurthy (2019).13 Lastly, I set µ = 0.007 to match the

average level of the real rate.

Second, for financiers’ technology and constraint, I calibrate κ = 0.4 to target an

average leverage of 3 (He and Krishnamurthy (2019)). I set λ = 0.08, which gives an ex-

pected payout rate of the intermediary as in Gertler and Kiyotaki (2015). The parameter

x can be interpreted as a tax rate on dividends received by savers; hence, I set x = 0.2 as

13Previous papers have used a wide range of values for σ. For example, He and Krishnamurthy (2013),
in a similar setup, use σ = 0.09; Brunnermeier and Sannikov (2014), also in a similar setup but with
endogenous production, use σ = 0.1.
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a plausible tax rate.14 Lastly, ω is a crucial parameter, and I set ω=0.85. From a quanti-

tative point of view, ω=0.85 implies that the price-dividend ratio and consumption can

drop, at most, 50 percent and 15 percent, respectively (this would be the case when

intermediaries have no wealth and savers hold the entire wealth in the economy). Im-

portantly, in equilibrium, households will almost surely never hold the entire wealth in

the economy (i.e., the probability of x reaching zero is almost surely zero). Indeed, only

in very rare occasionsy, the price-dividend ratio and consumption will drop more than

25 percent and 7 percent, respectively, in a given year.15

Finally, for the monetary policy rule, I set δπ = 1.5, which is a commonly used

parametrization since Taylor (1993) and broadly consistent with the evidence. I cali-

brate the monetary policy shock to match the persistence and volatility of the surprises

documented in Gertler and Karadi (2015).

Solution and Mechanism. Figure 1 shows the solution of the key endogenous variables.

All panels display the endogenous variables in the Markov equilibrium—that is, as a

function of the state variable x. The red dashed line in all panels represents the point at

which the financing constraint binds.

The invariant distribution, displayed in the lower-left panel of Figure 1, shows the

economy has two modes. It spends the majority of the time in a normal regime, where

constraints are slack (i.e., to the right of the red dashed line), and some time in a crisis

regime, where constraints are binding. Normal times are characterized by low volatil-

ity, low rates, and moderate leverage. As is common in these types of models, leverage

14The sole purpose of x is to avoid a degenerate distribution of wealth and it does not affect the quali-
tative results—it does not affect marginal decisions. In the appendix, I illustrate how x can be interpreted
as a tax rate.

15I discuss further details about ω in the appendix and show that the equilibrium-implied losses in
consumption and asset prices are broadly in line with the empirical evidence documented in Muir (2017)
and Greenwood, Hanson, Shleifer and Sørensen (2022).
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is countercyclical: The lower the intermediaries’ wealth (i.e., lower x), the higher the

leverage (as shown by the lower-right panel).

If the economy is in the normal regime and a sufficiently negative aggregate shock

occurs, financial intermediaries reallocate their portfolios, the price of risky assets de-

clines, and the price of risk increases (upper-right panel). Financing constraints may

bind (depending on the magnitude of the shock) and trigger the well-known finan-

cial accelerator mechanism studied in previous literature (e.g., Bernanke, Gertler and

Gilchrist (1999)), in which lower valuations deteriorate intermediaries’ wealth even fur-

ther. Following the first-order conditions (6) and (10), the price of risk when financiers

are constrained is given by

−Et

[
dmt

mt
dWt

]
/dt = γσc,t −

(
1
ψ
− γ

)
σξ,t,

and, when financiers are unconstrained, is given by

−Et

[(
dmt

mt
+

dφt

φt

)
dWt

]
/dt = γσc,t −

(
1
ψ
− γ

)
σξ,t − σφ.

The increase in the price of risk when financiers are unconstrained is primarily due to

two reasons. First, financiers are leveraged, and such leverage increases when x de-

clines. As a result, the volatility of x increases when x declines.16 Second, financiers

marginal utility of wealth, φt, increases when x declines. Hence, the diffusion compo-

nent associated with φt, σφ = φx
φ xσx, is negative and increases with σx. When the con-

straint binds, the price of risk is dominated by the increase in the volatility of consump-

tion, σc. As x declines further, the amplification role of x decreases and endogenous

16I show that the volatility of x, σx, is proportional to financiers’ leverage in the appendix.
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volatility declines, hence causing the volatility of x and, as a result, the price of risk to

decline.17

A central element in the yield curve dynamics is the behavior of the short-term in-

terest rate, r, shown in the upper-left panel. Notice that when the economy enters a

crisis regime, the price of risk spikes, and the real interest rate increases. This is be-

cause wealth is transferred to savers, who are inefficient in handling risky assets, which

means the level of aggregate dividends (and consumption) declines. Because the inef-

ficiencies caused by the misallocation of risky assets are temporary, savers expect the

consumption level to increase in the future, which causes an increase in the real inter-

est rate. Put differently, the dynamics for the consumption level are similar to a random

walk with drift, where deviations from the trend are persistent. When consumption is

below the trend, it is expected to mean-revert in the future. In the model, the trend is

endogenously driven by financial intermediaries’ wealth dynamics.

The Real Yield Curve. Intuitively, investors require a premium to hold an asset whose

value persistently declines in states in which the price of risk is high. This is precisely

what drives the real term premium in the economy: Real bond prices decline (i.e., real

rate persistently increases) in states in which the price of risk is high. Figure 2 shows

the average yield curve in the economy. Simply put, the presence of an unconditionally

positive term premium causes the yield curve to be upward sloping on average. The left

panel of Figure 2 illustrates the dynamics of yields at different horizons across the state

space. The mechanism through which financial intermediaries reduce their positions in

risky assets by selling those to less efficient savers is more pronounced in short-maturity

17In the baseline calibration, I set 1
ψ = γ; hence the term

(
1
ψ − γ

)
σξ,t is equal to zero. Qualitative results

do not change when 1
ψ 6= γ—the price of risk displays a similar behavior across x to that when 1

ψ = γ, as
the term σξ,t is small relative to σc,t.
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rates—long-term yields are less sensitive to the misallocation of wealth in the economy.

Put differently, current fluctuations in financiers’ wealth have a lower incidence in driv-

ing longer-maturity bonds, a feature that can be appreciated in the left panel of Figure

2. The panel shows the yield of bonds at 1-, 10-, and 30-year maturities and displays

the yield of a very long-term bond. As the horizon of the bond increases, the yields be-

come less sensitive to current financial conditions, and xt has a smaller effect on yields’

dynamics. This result, driven by the endogenous persistence of x, shows that even very

long-term rates can display substantial volatility.

The upper panel of Figure 3 shows the real yield curve for different levels of x. The

circles in the figure represent the average real yields.18 The yield curve is approximately

flat when x is high, mainly because term premia and real rates are low. When x is high,

financiers are relatively well capitalized, and financing constraints are slack. When x is

low, however, the economy is in crisis times, constraints are binding, and real yields are

high. In this state, the short-term rate is expected to mean-revert, and this force pushes

down long-term rates (even though term premia are high, the expectations of the short

rate dominate). Thus, the gray line shows a downward-sloping yield curve. Finally, the

lower panel of Figure 3 shows the standard deviations of yields across maturities. As

can be seen, the model can capture well the first and second moments of the real yield

curve.

The Nominal Yield Curve. Figure 4 shows the nominal yield curve in the baseline cali-

bration. The top panel displays the nominal yield curve when x is at its mean value and

shows the yield curve at different values for the other state variable, the monetary pol-

18I use both data for Treasury Inflation Protected Securities (TIPS) in the period 2002:Q1 to 2018:Q4 and
data from Chernov and Mueller (2012) for the period 1971:Q3 to 2001:Q4. I explain in the appendix all the
details about the data used in the paper.
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icy shock st. In equilibrium, a low st translates into a higher inflation, which ultimately

causes higher nominal interest rates. This result can be seen in the equilibrium nominal

short rate, which is the result of plugging the endogenous inflation process (1) into the

Taylor rule (12):

it = δ̃0 +

(
δπ

δπ − 1

)
rt +

(
1

1− δπ

)
st, (15)

where δ̃0 is an adjusted constant similar to δ0.19 Then, as long as δπ > 1 (which is

the empirically and theoretically relevant case), a higher (lower) st will, in equilibrium,

cause lower (higher) nominal rates because of the endogenous response in inflation.

The lower panel of Figure 4 shows the nominal yield curve for different values of x,

holding st at its unconditional mean. As noted in Schneider (2022), δπ > 1 produces

a nominal term premium that is larger than the real term premium. Hence, the model

can capture the evidence that the slope of the nominal yield curve is, on average, ap-

proximately twice as big as the slope of the real yield curve. Intuitively, this is because,

in order to pin down inflation, the monetary authority must adjust the nominal inter-

est rate to changes in the state of the economy in a relatively stronger fashion than the

adjustment of the real rate.

Precautionary Savings and Intertemporal Substitution. The dynamics of the short-

term interest rate are driven by the interplay of the consumption dynamics and the pref-

erences parameters—the risk aversion and EIS.20 This point can be clearly seen in the

case in which the economy is at the first best and financial frictions do not affect the

19δ̃0 = δ0 − δππ − δπ
δπ−1 δ̂0.

20Another possible force that could cause changes in the real interest rate is a non-neutral monetary
policy.
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allocation. In such a case, the interest rate is given by21

r = ρ +
µ

ψ︸︷︷︸
IS

− 1
2

(
1 +

1
ψ

)
γσ2︸ ︷︷ ︸

PS

. (16)

I denote the second term in (16) as the intertemporal substitution (IS) motives and the

third term as the precautionary savings (PS) motives (see, for example, Kimball and

Weill (2009)). The IS motives relate the expected consumption growth to the interest

rate, depending on the magnitude of the EIS, ψ. An increase in the expected consump-

tion growth, µ, increases the interest rate, and this effect is stronger when the EIS is

lower. That is, when savers have a lower EIS, the interest rate has to increase relatively

more if µ is higher in order to incentivize savers to smooth consumption over time and

clear the goods market. The PS motives relate the conditional volatility of consumption

growth to the interest rate, depending on the magnitude of risk aversion (for a given

EIS). An increase in the uncertainty of consumption growth, a higher σ, reduces the

lever of rates as risk averse savers seek to save more when they face a more uncertain

consumption path.

In the model with financial frictions, the intuition is similar to the one in the fric-

tionless case. An increase in the expected consumption growth pushes the short rate

higher through the IS channel, while an increase in the conditional volatility of con-

sumption pushes the short rate lower through the PS one. The key difference is that

the short rate cannot be solved in closed form as in expression (16). Instead, the short

rate and the consumption dynamics depend on the endogenous state variable, x (i.e.,

µc(x) and σc(x)). As a result, both the PS and IS motives would be a function of x. When

21See the appendix for the derivation of equation (16).
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the financial friction is binding and savers are holding risky assets, both expected con-

sumption growth and its volatility increase. On net, if the interest rate declines when

the constraint binds, this means the PS(x) must be dominating the IS(x) motives. I

next study the net effect of the PS(x) and IS(x) on the short rate and its effect on the

slope of the yield curve.

Figure (6) shows the dynamics of the short rate (left panel) as well as the slope of

the real yield curve (right panel) for different combinations of risk aversion and EIS. The

baseline calibration (γ = 5 and ψ = 1/5) is shown in blue. I label this calibration as

“High risk aversion, low low EIS.” In red, I show the results with a higher EIS but the

same risk aversion as in the baseline (γ = 5 and ψ = 1/3). This calibration can be

labeled as “High risk aversion, high EIS.” As shown, increasing the EIS —while holding

the risk aversion at the baseline level—reduces the term spread to approximately one-

third of the term spread obtained in the baseline calibration. The reduction in the term

spread is because a higher EIS increases the relative importance of the PS motives over

the IS motives when the constraint binds. As the volatility of consumption increases,

the short rate declines, as shown in the left panel. That is, the net effect of the PS and

the IS forces is that the PS motives dominate over the IS. The decline in the short rate

implies that real bond prices increase at some point during bad times, hence pushing

down the average real term premium. As the wealth of intermediaries declines further,

the pricing effect of intermediaries declines so that volatility decreases. Then the IS

motives dominate again, and the real rate increases as the consumption level declines

further when x goes to very low levels.

In yellow, I show the results with a higher EIS and lower risk aversion than in the

baseline (γ = 3 and ψ = 1/3)—a “Low risk aversion, high EIS” calibration. The results

27



are similar to the case in which only the EIS is higher than in the baseline, but with a

somewhat weaker effect of the PS motives. The short rate declines somewhat when the

financing constraint binds, which indicates that the PS motives are stronger than the

IS motives, but less so than in the case with γ = 5, ψ = 1/3. Notice that the case with

γ = 3, ψ = 1/3, implies a similar term spread to that in the case with γ = 5, ψ = 1/3.

This result indicates that the vast majority of the decline in the term spread from the

baseline calibration, “High risk aversion, low EIS”, to the “Low risk aversion, high EIS”

calibration can be attributed to the EIS rather than the risk-aversion coefficient.

Finally, in gray, I show the results with the basline risk aversion but an EIS greater

than 1 (γ = 5 and ψ = 6/5)—a calibration with “High risk aversion and EIS greater than

1.” Results show a similar intuition to those in the previous cases. A higher EIS translates

into a smaller IS force relative to the PS motives when the constraint binds. As a result,

the short rate declines relatively more than in the other cases, reducing the average term

spread.

Time-Varying Term Premium and Bond Return Predictability. A central property of

the model is that expected excess returns on bonds are time varying. As a consequence,

long-term yields fluctuate not only because of changes in the expected path of short-

term rates, but also because of changes in the term premium. In other words, the so-

called expectations hypothesis is rejected in the model, a feature that is consistent with

a large body of evidence.22

The upper-left panel in Figure (5) shows the dynamics of the term premium in the

model, for different maturities, across the state space. The average term premium is

positive and increasing across maturities, as shown by the upper-right panel of Figure

22Duffee (2013) provides a summary.
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(5). Intuitively, bonds of longer maturity contain more interest rate risk than do bonds

of short maturity and, as a consequence, carry a larger premium. Notice that the term

premium spikes when the constraints bind, as the price of risk increases and real bond

prices decline, in a similar dynamic to the one explained in the mechanism in the pre-

vious subsection.

Because the term premium fluctuates over time, a natural question to ask is whether

information in the yield curve at time t helps in predicting future fluctuations in term

premia. In particular, the seminal work of Fama and Bliss (1987) shows that the forward-

spot spread predicts future excess returns on bonds, which is one of the salient proper-

ties of the empirical evidence about the yield curve. I next study the extent to which the

predictability of bond returns is captured by the model. For this exercise, I conduct a

predictability analysis following Fama and Bliss (1987). I run, using simulated data from

the model, the following regressions:

rx(τ)t+1 = α(τ) + β(τ)
(

f $(τ)
t − y$(1)

t

)
+ εt+1, (17)

where rx(τ)t+1 = p$(τ)
t+1 − p$(τ)

t − y$(1)
t , with p$(τ)

t = log P$(τ)
t , is the excess returns of a

τ−maturity bond; f $(τ)
t is the one-year nominal forward rate between maturity n and

n− 1; and y$(1)
t is the one-year nominal rate.

As noted in Fama and Bliss (1987), a positive β(τ) indicates that the term premium

fluctuates through time and that a higher forward-spot spread predicts higher expected

excess returns on bonds. Figure (5) shows the results for the β(τ) in the model, for matu-

rities between two and five years (as in Fama and Bliss (1987)). As shown, model-implied

coefficients are positive across all maturities, which implies the forward-spot spread in

the model contains information about future bond excess returns, consistent with the
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evidence reported in Fama and Bliss (1987).

A complementary way to illustrate the predictability results in the model is to nu-

merically compute the elements in regression (17) and study how they change across

the state space. For this analysis, I study how expected excess returns and the forward-

spot spread change across the state space.

The lower-right panel of Figure (5) shows the expected excess returns for a five-year

bond as well as the five-year forward-spot spread across the state space. Consistent with

the estimates of equation (17) shown in the lower-left panel of Figure (5), as well as the

results in Fama and Bliss (1987), the model implies a positive co-movement between

the expected excess returns and the forward-spot spread. In other words, movements

in long-term one-year forwards (relative to the one spot one-year rate) are primarily

driven by the spike in the term premium.

Term Structure of Conditional Distributions. Recent literature has stressed the role of

financing conditions when forecasting the distribution of future real variables (Giglio

et al. (2016);Adrian et al. (2019)). The term structure of distributions of real variables is

related to the yield curve because the former is a forecast of the conditional distribution

of a random variable at a certain point in the future, while the latter is the conditional

expectation of marginal utility at a certain point in the future.23 I show the key economic

forces driving the yield curve, elaborated earlier, are also consistent with the evidence

about the term structure of conditional distributions of future outcomes.

To compute the term-structure of distributions, consider a process zt in the model

that follows an Itô process

dzt = µz,tdt + σz,tdWt,

23Technically, these two objects are the forward Kolmogorov equation and the backward Kolmogorov
equations.
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where µz,t = µz (xt) and σz,t = σz (xt) are the drift and diffusion, respectively. Next,

I define the function f (xs|xt = x̃, s) as the conditional distribution of x at each point

in time s > t, starting from a point x̃. The evolution of the density over time can be

described by the following partial differential equation:

∂ f (z (x) |x̃, t)
∂t

= − ∂

∂x
[ f (z (x) |x̃, t) µ (x)] +

1
2

∂2

∂x2

[
f (z (x) |x̃) σ (x)2

]
,

which is also known as the forward Kolmogorov equation (or Fokker-Planck equation).

Figure 7 shows the forecasted conditional distributions for consumption (top two

panels) and the state variable x (bottom two panels) at different horizons. The blue

line represents the forecasted densities conditional on current financial conditions be-

ing loose. More precisely, the distributions are forecasted conditional on xt = x̃, where

x̃ is 10 percent above the point at which financing constraints bind. The distribution

in red represents the forecasted density conditional on current financial conditions be-

ing tight. I assume xt is 10 percent below the point where financing constraints bind.

The red dashed line in all four panels represents the point in the state space at which

financing constraints bind.

In line with the evidence reported in Adrian et al. (2019), the top two panels in-

dicate that, conditional on the economy facing tight financial conditions, the distri-

bution of future consumption is negatively skewed. Also, the conditional distribution

fluctuates across the horizon, and the relatively negative skewness of the conditionally

constrained distribution persists even in the three-year-ahead forecasted distribution.

The main source of the asymmetry between the constrained and unconstrained dis-

tributions is that economic outcomes are quite different in the constrained and uncon-

strained regions. For example, in the constrained region, the economy is more leveraged
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(and thus more sensitive to shocks), the real rate is much more volatile, and the price

of risk moves faster. These conditions may persist because it takes time for financiers’

wealth to be rebuilt. Simply put, x is a persistent process.

The bottom two panels display the forecasted conditional distributions for the state

variable x. The intuition is similar to that of consumption growth. Tight financial con-

ditions are persistent and can trigger quite volatile and unstable outcomes. Simply

put, the model rationalizes the data with two main elements: Tighter financial condi-

tions are persistent outcomes, and they lead to quite different economic outcomes than

those implied by the economy functioning in an unconstrained region. As with the yield

curve, the key elements are the bimodal nature of the economy and the persistent dy-

namics of intermediaries’ wealth.

4 Conclusion

Financial intermediaries hold long-term assets, which means fluctuations in long-term

yields affect the extent to which intermediaries are financially constrained. These con-

straints affect marginal valuations in the economy not only of the intermediaries, but

also, in general equilibrium, of other agents. Hence, because long-term yields are fore-

casts of marginal valuations, financing constraints and long-term yields are directly re-

lated to each other.

In this paper, I show that financing constraints generate an endogenously time-

varying real term premium that is consistent with the data. The nominal yield curve

is primarily driven by the real factor that captures the health on intermediaries’ bal-

ance sheets. The mechanism I propose can rationalize relevant yield curve facts, such
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as an upward-sloping real yield curve and highly volatile long-term yields, which are in-

deed hard to capture in standard macro models (Duffee, 2018). These results are purely

driven by the fact that intermediaries’ financing constraints may occasionally bind, link-

ing the yield curve to intermediaries’ financial health.

The novel economic mechanism I propose, connecting intermediaries’ wealth and

the yield curve, can rationalize interesting macroeconomic phenomena, suggesting that

there are several potential avenues for further research. In particular, I show that the

same mechanism explaining the term structure of interest rates is also able to rational-

ize the negative skewness in the term structure of distributions of consumption when

financing constraints are binding.

There are, however, several important quantitative elements of yields that the model

cannot rationalize. For example, the model implies a positive correlation between bond

and stock returns, while the evidence suggests that the sign of such a correlation has

changed from positive to negative in the past few decades (Campbell, Pflueger and Vi-

ceira (2020); Chernov, Lochstoer and Song (2023)). Also, the model cannot rationalize

the time-variation in yields’ conditional skewness, an important property of yields that

helps in understanding the time variation of bond returns (Bauer and Chernov (2023)).

Indeed, the model implies that conditional skewness is always positive and such con-

ditional skewness has very little power for predicting bond returns. I speculate that in-

corporating additional state variables—for example, by incorporating heterogeneous

intermediaries and savers—could help in addressing some of these issues.
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5 Tables and Figures

TABLE 1. Calibration

PARAMETERS

Value Description

1. Preferences and Endowment

γ 5 Risk aversion

ψ 1/5 EIS

µ 0.007 Drift Yt

σ 0.036 Volatility Yt

2. Financiers

λ 0.08 Dividend payout

ω 0.85 Management cost

κ 0.4 Fraction divertible assets

3. Nominal Rate

δπ 1.5 Taylor coefficient

λs 0.06 Persistence of monetary shocks

σs 0.0024 Volatility of monetary shocks

NOTE: This table shows the calibration of the model at an annual frequency.
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FIGURE 1. Model Solution
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NOTE: This figure shows the model solution, with the calibrated parameters from Table 1. The
red dashed line represents the point in the state space at which the financial constraint binds.
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FIGURE 2. Model Solution: Yields
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NOTE: This figure shows the real yield curve in the model, with the calibrated parameters from
Table 1. The left panel shows yields for different maturities over the state space. The right panel
shows the average yields.
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FIGURE 3. Real Yield Curve

2 4 6 8 10 12 14 16 18 20

Maturity (years)

0.01

0.02

0.03

0.04

0.05

Y
ie

ld
s
 (

a
n
n
u
a
l)

Low x

Mean x

High x

Data

1 2 3 5 7 10

Maturity (years)

0

0.005

0.01

0.015

0.02

0.025

S
td

. 
D

e
v
. 
(a

n
n
u
a
l) Data

Model

NOTE: This figure shows the real yield curve in the model, with the calibrated parameters from
Table 1. The top panel displays the yield curve for three different levels of x (mean, plus two
standard deviations, and minus two standard deviations). The bottom panel show the standard
deviation of yields. The data for real yields are from Chernov and Mueller (2012) for the 1971-
2002 period, and the TIPS data are from Gürkaynak, Sack and Wright (2010) for the 2003-18
period. See the appendix for more details about the data.
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FIGURE 4. Nominal Yield Curve
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NOTE: This figure shows the nominal yield curve in the model, with the calibrated parameters
from Table 1. The top panel displays the yield curve for three different levels of the persistent
monetary policy shock variable s (mean, plus two standard deviations, and minus two standard
deviations), when x is at its steady state value. The bottom panel displays the yield curve for
three different levels of the persistent state variable x (mean, plus two standard deviations, and
minus two standard deviations), when s is at its steady state value. The data for nominal yields
are from Gürkaynak, Sack and Wright (2007). I provide details about the data in the appendix.
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FIGURE 5. Term Premium and Bond Return Predictability
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NOTE: The upper-left panel shows the term premium of zero-coupon bonds of different maturi-
ties. The upper-right panel shows the term structure of the term premium when the state vari-
able x is at its unconditional mean. The bottom-left panel shows the estimated coefficients of
the Fama-Bliss regressions (shown in the main text) for simulated data from the nominal model.
The simulation consists of 200 paths with 100,000 realizations in each path. The estimated coef-
ficients from the data come from running the Fama-Bliss regression (17) using nominal yields in
the period 1971-2018 (see the appendix for details about the data). The confidence intervals are
two standard deviations from the point estimate. The lower-right panel shows the 5-year term
premium and the forward-spot spread in the model.
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FIGURE 6. The Role of Risk Aversion and the EIS
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NOTE: The left panel shows the slope of the real yield curve (10-year minus 1-year spread) for
different parametrizations of the risk aversion and EIS coefficients. The right panel shows the
real rate across the state space for different parametrizations of the risk-aversion and EIS coeffi-
cients, rescaled such that the real rate is the same in the first best for all parametrizations. The
baseline calibration is the one reported in Table 1.
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FIGURE 7. Term Structure of Conditional Distributions for Consumption
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NOTE: This figure shows (1) the conditional distributions of consumption 1 and 3 years ahead
(top two panels) and (2) the conditional distributions of the endogenous state variable x 1 and 3
years ahead (bottom two panels). The distributions are conditional on the state of the economy
being an unconstrained one (blue lines) or a constrained one (red lines). The red dashed line is
the point in the state space at which constraints bind.
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7 Appendix

Proof of Proposition 1. I derive the law of motion of the endogenous state variable, xt,

which is key in solving the ODEs. Applying Itô’s lemma to
n f ,t
qt

:

dxt =
dn f ,t

qt
−

n f ,t

q2
t

dqt +
n f ,t

q3
t
(dqt)

2 − dqt

q2
t

dn f ,t +
λ

qt
(xqt − n f ,t)dt, (18)

where the last term, λ
qt
(xqt− n f t), represents the initial capital received by financiers, net

of their aggregate dividends (and divided by qt). Notice that, on the one hand, financiers

receive a fraction x of total wealth qt each instant, with intensity λ, as a start-up capital

to initiate their business. Hence, financiers’ aggregate wealth increases λxqt each in-

stant. On the other hand, financiers pay their wealth as dividends, n f ,t, with intensity

λ, which decreases financiers’ aggregate wealth by λn f ,t each instant. Combining these

two terms, the net change in aggregate wealth is given by λ(xqt − n f t), which I divide by

qt as a result of Itô’s lemma taken on xt. Finally, notice that λ
qt
(xqt − n f t) = λ(x− xt).

Then, substituting the law of motion for qt and n f ,t in (18), I get

dxt = xt

[
rt +

qtθ f ,t

n f ,t

(
Et
[
dR f ,t

]
− rt

)
− µq,t +

(
qtθ f ,t

n f ,t
− 1

)
σ2

q,t

]
dt +

xt

(
qtθ f ,t

n f ,t
− 1

)
σq,tdWt + λ (x− xt)dt.

Based on the previous expression, I denote the drift and diffusion as

xtµx,t = xt

[
rt +

qtθ f ,t

n f ,t

(
Et
[
dR f ,t

]
− rt

)
− µq,t +

(
qtθ f ,t

n f ,t
− 1

)
σ2

q,t

]
+ λ (x− xt) ,

xtσx,t = xt

(
qtθ f ,t

n f ,t
− 1

)
σq,t.
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I next derive the system of ordinary differential equations for five unknown functions—namely,

the price-dividend ratio p (x) , the financiers’ marginal value of wealth φ (x) , the savers’

utility function ξ (x) , the real bond prices {P (x, τ)}τ≥0, and the nominal bond prices{
P$ (x, s, τ)

}
τ≥0 .

When the financing constraint is not binding the first-order conditions of financiers’

problem is

Et
[
dR f ,t

]
− rtdt + Et

[(
dmt

mt
+

dφt

φt

)
dR f ,t

]
= 0. (19)

Equation (19) is the first equation in proposition 2 (i.e., the ODE for the price-dividend

in the unconstrained region). Then, substituting (19) into financiers’ value function (9),

yields the second equation in the system (i.e., the ODE for financier’s marginal value of

wealth, φ). When financiers are constrained, the savers’ pricing equation is

Et [dRs,t]− rtdt + Et

[
dmt

mt
dRs,t

]
= 0. (20)

Equation (20) is the fourth equation in proposition 2, and replacing (20) into financiers’

value function gives the fifth equation.

Finally, the third and sixth equations are the savers’ value function. I denote the

value function with optimal policies as (c∗, U∗)

0 =
1

1− 1
ψ

{
ρ (c∗)1− 1

ψ [(1− γ)U∗]
1
ψ−γ

1−γ − ρ (1− γ)U∗
}
+ Et [dU∗] .

I guess and verify the solution is given by

U∗ =
(ξ (x) c∗)

1− γ

1−γ

. (21)
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Then, using Itô’s lemma and substituting, I get

0 =
ρ

1− 1
ψ

{
ξ

1
ψ−1 − 1

}
+ µc −

γ

2
σ2

c +
ξx

ξ
xµx −

γ

2

(
ξxx

ξ
xσx

)2

+ (1− γ)
ξx

ξ
xσc. (22)

All drifts and diffusions terms in proposition 2, terms µp (x) , µφ (x) ,µξ (x) , µP (x, τ) , µc (x)

and σp (x) , σφ (x) , σξ (x) , σP (x, τ) , σc (x) are partial derivatives from applying Itô’s lemma

in their corresponding functions. That is,

µp (x) =
px

p
Et [dx] +

1
2

pxx

p
Et

[
dx2
]

,

µφ (x) =
φx

φ
Et [dx] +

1
2

φxx

φ
Et

[
dx2
]

,

µξ (x) =
ξx

ξ
Et [dx] +

1
2

ξxx

ξ
Et

[
dx2
]

,

µP (x, τ) =
P (τ)x
P (τ)

Et [dx] +
1
2

P (τ)xx
P (τ)

Et

[
dx2
]

,

and

σp (x) =
px

p
xσx; σξ (x) =

ξx

ξ
xσx; σξ (x) =

ξx

ξ
xσx; σP (x, τ) =

P (τ)x
P (τ)

xσx.

The drift and diffusion for the nominal bond prices can be expressed in a similar way,

in terms of the partial derivatives, but include the extra terms associated with of the

exogenous state variable—the monetary policy shocks.

For consumption, use the market clearing condition for goods

ct =
[

ωαs
t (1− xt) + xtα

f
t

]
Yt,

=
[

ω + (1−ω) xtα
f
t

]
Yt,
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and apply Itô’s lemma:

µc =
(1−ω) xtα

f
t[

ω + (1−ω) xtα
f
t

] [µx +
φx

φ
xµx +

1
2

φxx

φ
(xσx)

2 +
φx

φ
xσ2

x +

(
φx

φ
x + 1

)
σxσ

]
+ µ,

σc =
(1−ω) xtα

f
t[

ω + (1−ω) xtα
f
t

] (ψx

ψ
x + 1

)
σx + σ.

Finally, I show rtdt = −Et

[
dmt
mt

]
. For this, I follow the characterization in Cox, In-

gersoll and Ross (1985a) and Duffie and Epstein (1992a). The savers’ problem is

0 = max
c,θs

1
1− 1

ψ

{
ρc1− 1

ψ [(1− γ)U]

1
ψ−γ

1−γ − ρ (1− γ)U

}
+ Et [dU] . (23)

subject to (2). I apply Itô’s lemma on U (x, n) to write

Et [dU] = UxEt [dx] +
1
2

UxxEt

[
dx2
]
+ UnEt [dn] +

1
2

UnnEt

[
dn2

]
+ UnxEt [dndx] .

The first-order conditions are

ρc−
1
ψ [(1− γ)U]

1
ψ−γ

1−γ = Un,

qUn (Et [dRs]− r) + Unnθsq2σ2
q + Uxnqσqσx = 0.

Then, I substitute the law of motion for n, and the first-order conditions in (23) to get

0 =
ρψ

1− 1
ψ

[(1− γ)U]

1
ψ−γ

1−γ ψ U1−ψ
n − ρ (1− γ)U

1− 1
ψ

− ρψ [(1− γ)U]

1
ψ−γ

1−γ ψ U1−ψ
n

+Un [T + rn]− 1
2

Unn (θ
sq)2 σ2

q + UxEt [dx] +
1
2

UxxEt

[
dx2
]

. (24)
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The next step is to take the derivative of (24) with respect to n. After some algebra,

0 =

[( 1
ψ − γ

1− γ

)(
ψ

ψ− 1

)
Un

U
− Unn

Un

]
ρψ [(1− γ)U]

1
ψ−γ

1−γ ψ U1−ψ
n

−ρ (1− γ)

1− 1
ψ

Un + Unn [T + rn] + Unr

−1
2

Unnn (θ
sq)2 σ2

q + UnxEt [dx] +
1
2

UnxxEt

[
dx2
]

. (25)

The final step is to subtract the stochastic discount factor (SDF) from the expression

above. For this, I follow Duffie and Epstein (1992a), and express

dmt

mt
=

d fc

fc
+ fU dt,

with

fU =

(
1
ψ − γ

)
ρ

1− 1
ψ

c1−1/ψ [(1− γ)U]

1
ψ−γ

1−γ −1 − ρ (1− γ)

1− 1
ψ

, (26)

fc = ρc−
1
ψ [(1− γ)U]

1
ψ−γ

1−γ . (27)

Using the first-order condition, fc = Un, the conditional expectation of the SDF can be

written as

Et

[
dm
m

]
=

Unn

Un
[rn + T]− ρψ [(1− γ)U]

1
ψ−γ

1−γ ψ U−ψ
n

Unn

Un
− 1

2
Unnn

Un
(θq)2 σ2

q

+
Unx

Un
Et [dx] +

1
2

Unxx

Un
Et

[
dx2
]

+

1
ψ − γ

1− 1
ψ

ρψ [(1− γ)U]
(1−ψ)γ

1−γ U1−ψ
n − ρ (1− γ)

1− 1
ψ

. (28)
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Finally, I divide (25) by Un and subtract the resulting expresion from (28) to get Et

[
dm
m

]
=

−rtdt.

x as a Tax Rate. The role of x is to avoid a degenerate invariant wealth distribution in

which financiers accumulate all the wealth. I next discuss an intuition to interpret x as

a tax rate. As noted in the text, financiers pay to savers λn f ,t each instant. Suppose a

government taxes dividends and redistribute them to financiers (motivated by the fact

that financiers can achieve a better allocation of goods and capital since they are more

efficient than savers). Let the tax rate be x, so that the net dividend received by savers

is (1 − x)λn f ,t and the government—who runs a balanced budget—rebates the tax to

financiers, who receive xλn f ,t. On the other hand, assume new financiers must have

xns,t resources to start a financial firm, which can be motivated by a regulation. Thus,

financiers’ total wealth will receive λxns,t from incoming financiers. Then, aggregate

wealth from financiers would have the following terms

dn f ,t = −λn f ,tdt +
(
λxn f ,t + λxns,t

)
dt + others,

where −λn f ,t are the aggregate dividends paid by financiers to savers; λxn f ,t are the

taxes on dividends paid by savers and rebated to financiers; and λxns,t is the minimum

capital needed to start the financial firm. Then, when computing Itô’s lemma on xt =

n f ,t/qt, we have

dxt = −λ
n f ,t

qt
dt +

1
qt

(
λxn f ,t + λxns,t

)
dt + others,

= −λ
n f ,t

qt
dt +

λx
qt

(
n f ,t + ns,t

)
dt + others,

= λ (x− xt) + others, (29)
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where the last step uses n f ,t + ns,t = qt and
n f ,t
qt

= xt. Note that expression (29) is the

same as expression (18).

The Real Interest Rate in the Frictionless Case. When there are no financial frictions,

the interest rate is constant. The consumption process follows a geometric Brownian

motion. Using expressions (26) and (27), as well as the value function, together with the

definition−Et

[
dm
m

]
= rtdt, the interest rate in the frictionless case is

r = ρ +
1
ψ

µ− 1
2

(
1 +

1
ψ

)
γσ2.

Boundary Conditions. The boundary conditions for the system of three second-order

ordinary differential equations are

lim
x↗1

φx = lim
x↗1

φxx = lim
x↗1

qx = lim
x↗1

qxx = lim
x↗1

ξx = lim
x↗1

ξxx = 0.

Intuitively, these boundary conditions imply that, as x approaches 1 and financiers are

well capitalized, the economy converges smoothly to the first best and there is no am-

plification of aggregate risk (i.e., asset price volatility is equal to fundamental volatility,

so σq = σ). Note, however, that x never reaches 1 because, as x increases towards 1, the

drift of x becomes negative (due to the dividend payments) and the diffusion compo-

nent approaches zero.24

Consumption and Price-Dividend Ratio During Financial Disruptions. Figure (??) be-

low shows the consumption losses (left panel) and changes in the price-dividend ratio

(right panel) across the state space. The vertical red dashed line shows the point in the

24Karlin and Taylor (1981) provide further details about the boundary behavior of stochastic processes
with reflecting boundaries.
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state space at which the invariant distribution accumulates is 1% probability.

FIGURE A.1. Consumption and Price-dividend ratio
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As shown in figure A.1, it is very unlikely that, in the model’s equilibrium, consump-

tion losses will exceed -7% and the price-dividend ratio changes exceed -28.8% in a

given year. Muir (2017) shows that declines in consumption and the price-dividend ra-

tio associated with financial crises—defined as a banking panic or banking crisis—are

broadly in line with the model: The evidence for financial crises indicates that those

episodes are associated with an average decline of approximately 25% in price-dividend

ratio and a 9% decline in consumption levels.25 Additionally, Greenwood et al. (2022)

show, using a very similar dataset than Muir (2017), that the unconditional probability

of a financial crises is 4%.26 Hence, the evidence points to rare occasions (4% prob-
25More details about the definition of financial crises can be found in Muir (2017), Section 2.
26Jordà, Schularick and Taylor (2016)
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ability) in which financial intermediaries wealth is unpaired, and those occasions are

characterized by approximately 9% consumption losses and a 25% decline in the price-

dividend ratio, which is similar to the model implications.

Consumption and Dividend Claims: Risk premium and Volatility. Figure A.2 shows

the risk premium and the (conditional) volatility of the consumption claim and a div-

idend claim. I compute the dividend claim as a leveraged claim on consumption, as

it is common in the asset pricing literature (Abel (1990),Campbell (2003), Campbell et

al. (2020), among others). That is, the dividend claim is computed using the dividend

process Dt = Yη
t , which, using Itô’s lemma, follows

dDt

Dt
= η

dYt

Yt
+

1
2

η (η − 1)
(

dYt

Yt

)2

,

=

[
ηµ +

1
2

η (η − 1) σ2
]

dt + ησdWt.

I use η = 3, a value that is consistent with the asset pricing literature (e.g., Bansal and

Yaron (2004)).
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FIGURE A.2. Consumption and dividend claims: Risk premium and

volatility
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NOTE: The left panel shows the risk premium on the consumption claim (blue solid line) and

on the dividend claim (red dashed line). The right panel shows theconditional volatility for the

consumption claim (blue solid line) and for the dividend claim (red dashed line). The dividend

claim follows Dt = Yη
t , using η = 3.
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TABLE A.2. Summary Statistics on TIPS and Nominal Treasuries.

1y 2y 3y 5y 7y 10y

TIPS

Average 0.016 0.017 0.018 0.020 0.021 0.023

St. Dev. 0.019 0.017 0.016 0.015 0.013 0.012

Nominal

Average 0.052 0.054 0.056 0.059 0.062 0.064

St. Dev. 0.035 0.034 0.033 0.032 0.030 0.029

NOTE: The source of data for real yields is Chernov and Mueller (2012) from 1971-2002 and

Gürkaynak et al. (2010) for TIPS from 2003-2018. The data from Chernov and Mueller (2012)

can be easily accessed on the Muller’s website. The data for nominal yields in Figure 4 are from

Gürkaynak et al. (2007) from 1971-2018. The table shows the mean and standard deviation of

real and nominal yields, which are the statistics used in figures 2 and 4. The summary statistics

are expressed in decimals at an annual frequency.
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Numerical Method. I use a spectral collocation method based on Chebyshev polyno-

mials of the first kind to numerically solve the model. Conceptually, the numerical so-

lution consists of representing the unknown functions as Chebyshev polynomials on

a grid and then substituting them into the ODEs that characterize the equilibrium. In

particular, I solve for: i) The financiers’ value functions; ii) the price-dividend ratio; iii)

the savers’ value function; iv) real bond prices; and v) nominal bond prices. The system

of equations is in proposition 1 in the main text and the detailed derivation is in the

appendix.

The steps are as follow:

1. First, construct a grid with K Chebyshev nodes

hi = cos
(

2i + 1
2 (K + 1)

π

)
, i = 0, ..., K.

Therefore, hi ∈ [−1, 1] . Since, in the model x ∈ (0, 1), I express the grid on x as

xi =
1
2 (1 + hi).

2. Then, a given function g(x), which needs to be solved, can be written in polyno-

mial form

g(x) =
K

∑
i=0

aiΨi (hi (x)) + O (K) ,

where K is the order of the polynomial, Ψ is the basis function (which, in this

case, is the Chebyshev polynomials), {ai}K
i=0 are unknown coefficients that need

to solved, hi are the Chebyshev nodes, and O (K) is an approximation error.

3. Then, solve for the associated set of unknown coefficients {ai}K
i=0 in each function,

such that equilibrium conditions are verified.
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(a) Start with a guess for the unknown coefficients.

(b) For a guessed solution, use financiers’ optimality condition to compute x∗,

which is the point at which the leverage constraint binds. That is, the point at

which α f ,t = 1/xt becomes α f ,t = φt/κ.

(c) Solve the corresponding system of equations with a nonlinear solver and ver-

ify.

4. Once the equilibrium is solved, I solve the yield curve using forward finite differ-

ence across the maturity dimension. That is, starting from P(0)(x) = 1, I solve for

the bond prices in the state space (using the steps above) and iterate across the

maturity dimension with

P(τ+∆) (x)− P(τ) (x)
∆

≈ P(τ)
τ (x) .
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FIGURE A.3. Bi-variate distribution of x and monetary policy shocks.

NOTES: This figure shows the invariant distribution of the endogenous state variable, x, and the
exogenous state variable, monetary policy shocks.
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